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Abstract A new theory of stereoisomerism in harmony with molecular symmetry
has been developed by starting from RS-stereoisomeric groups correlated to stereois-
ograms and their correlation diagrams. The substitution positions of a stereoskeleton
are permuted by a set of epimerizations at the RS-stereogenic centers of the stereo-
skeleton. The product of epimerizations and the mirror-image transformation of the
skeleton characterize the total feature of isomerization, which is based on the axiom
of organic stereoisomerism. Then, stereoisomeric groups are formulated to develop
the theory of stereoisomerism after several related groups are defined, e.g., stere-
oisogram groups, epimerization groups, local symmetry groups, epimeric stereoiso-
gram groups, epimeric RS-stereoisomeric groups, and multiple epimerization groups.
On the basis of the stereoisomeric groups, stereoisomeric representations are derived
and employed to discuss correlation diagrams of stereoisograms. On the other hand,
molecular-symmetry representations are derived from the stereoisomeric groups and
employed to discuss molecular symmetries. Typical topics of stereochemistry, e.g.,
the CIP system for giving RS-stereodescriptors and the Fischer-Rosanoff convention
for naming dl-series of sugars, are discussed on the basis of the present theory.
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1 Introduction

Since the beginning of organic stereochemistry founded by van’t Hoff [1] and Le Bel
[2], stereoisomerism and molecular symmetry (molecular chirality) have been dis-
cussed in a combined fashion, because they are partly related to each other in spite
of conceptual distinction between them. For example, a pair of a molecule and its
mirror-image molecule is discussed by using the term “chirality” from a viewpoint
of molecular symmetry, where the term “achirality” is pairwise used. On the other
hand, the same pair is alternatively discussed by using the term “enantiomerism” (or
“enantiomeric relationship”) from a viewpoint of stereoisomerism, where the term
“diastereoisomerism” (or “diastereomeric relationship”) is used as a counterpart. Chi-
rality and enantiomerism have close relationship because enantiomerism is based on
the relationship between two chiral molecules of opposite chirality senses. In con-
trast, diastereoisomerism has nothing to do with chirality, because pseudoasymmetric
cases investigated by Fischer provide examples of achiral and diastereomeric com-
pounds [3,4]. More strictly speaking, the relationship between diastereoisomerism
and chirality is indirect (via enantiomerism), because diastereoisomerism is defined
as “stereoisomerism other than enantiomerism” in the IUPAC 1996 Recommendations
[5].

The comments in the preceding paragraph can be summarized into the following
two schemes: “stereoisomerism = enantiomerism + diastereoisomerism” and “enanti-
omerism ↔ chirality (molecular symmetry)”, which show entangled features of the
combined situation between stereoisomerism and molecular symmetry. The entan-
gled features had long been unnoticed, as exemplified by the title “Specification of
Molecular Chirality” of the original version of the Cahn-Ingold-Prelog (CIP) system
[6]. So long as we judge from the title, RS-stereodescriptors of the CIP system were
apparently claimed to specify chirality, which is a kind of properties concerned with
molecular symmetry. Even the original version of the CIP system, however, aimed
at the assignment of RS-stereodescriptors to pseudoasymmetric cases [7], although
chirality does not directly participate in these cases because these are achiral and
diastereomeric to each other.

Later, the revised version of the CIP system [8] changed its basis from chirality
to stereogenicity. Although stereogenicity seemingly referred to stereoisomerism to
be treated by the CIP system, the differentiation between chirality and stereogenicity
was still insufficient, so that the stereogenicity was found to be a simple combina-
tion of enantiomerism and diastereoisomerism. Although there appeared convincing
comments on the differentiation between chirality and stereogenicity by Mislow and
Siegel [9] and on the consistency of RS-stereodescriptors to molecular symmetry
by Helmchen [10], the concept of stereogenicity has not been directly defined as a
basis of specifying RS-stereodescriptors in the IUPAC 1996 Recommendations [5]
and even in the IUPAC 2004 Provisional Recommendations [11, P-91.1.1.1]. Instead,
the term “stereogenic units” has been defined as a remedy for the absence of such
a direct definition. This remedy, however, has concealed the fact the differentia-
tion between chirality and stereogenicity has not been fully demonstrated. More-
over, there remains a critical drawback: the concept of stereogenicity has no pairwise
nature (especially diastereoisomerism, except enantiomerism), even though R and
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S-stereodescriptors due to stereogenicity should be pairwise given to diastereomers
as well as to enantiomers.

For the purpose of avoiding the drawback, Fujita’s USCI (unit-subduced-cycle-
index) approach for investigating pairwise nature due to chirality in molecular sym-
metry [12,13] and in enumeration of stereoisomers [14,15] has been extended so
as to be capable of investigating pairwise nature in stereoisomerism. Thereby, the
concept of RS-stereogenicity has been developed by Fujita [16,17], where the CIP
system was clarified to be based on the pairwise nature due to RS-stereogenicity.
Then the pairwise nature due to RS-stereogenicity was related to RS-diastereomeric
relationships for specifying R and S-stereodescriptors, just as the pairwise nature
due to chirality was related to enantiomeric relationships [12,13]. These two types of
relationships have been integrated to RS-stereoisomeric relationships by developing
stereoisograms, which turned out to contain holantimeric relationships as an additional
type of relationships [16]. Such stereoisograms have been categorized into five types
(Types I–V), which indicate that RS-stereogenicity is inherent in Types I, III, and V,
while chirality is inherent in Types I, II, and III [16,18].

The investigations described in the preceding paragraph have been mainly con-
cerned with cases having a single RS-stereogenic center. Recently, an extension to
treat multiple RS-stereogenic centers has been discussed by Fujita in this journal
[19], where the concept of correlation diagrams of stereoisograms was developed to
characterize a set of stereoisograms generated at the respective RS-stereogenic cen-
ters. However, the previous investigation [19] was restricted to special cases such as
di-or trisubstituted cyclobutanes, so that the generality of correlation diagrams has not
been fully demonstrated. In particular, it has been still unsolved how stereoisograms
generally behave in such a correlation diagram.

The present paper is devoted to develop a new theory of stereoisomerism, which
aims at clarifying the generality of correlation diagrams and at untangling the combined
situation between stereoisomerism and molecular symmetry. The task of achieving the
aims requires several new concepts for clarifying the behavior of stereoisograms in
a correlation diagram, e.g., epimerization groups, local symmetry groups, epimeric
stereoisogram groups, epimeric RS-stereoisomeric groups, multiple epimerization
groups, stereoisomeric groups, stereoisomeric representations, and molecular-sym-
metry representations. Thereby, the theory of stereoisomerism to be developed is in
harmony with molecular symmetry, so that it will serve as a new approach to a logical
and mathematical foundation which has been long-awaited over 130 years from the
beginning of organic stereochemistry.

2 Stereoskeletons and stereoisomers

2.1 Locant numbering of stereoskeletons

A molecule (or a promolecule in a more abstract fashion) is regarded as a derivative
of a stereoskeleton with a set (�) of n substitution positions. The stereoskeleton

is a three-dimensional object which belongs to a molecular-symmetric group
∗
GCσ ,

where its substitution positions accommodate a set of (pro)ligands to produce such
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Fig. 1 Modes of locant
numbering of a cyclobutane
stereoskeleton

1 2
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78
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34
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78

1 2

a (pro)molecule. For the formulation of promolecules and proligands, see [20]. The

molecular-symmetric group
∗
GCσ is usually selected as a point group or a related group

(e.g., a wreath product):

∗
GCσ = ∗

GC + ∗
σ

∗
GC , (1)

where
∗
GC contains proper rotations, while the coset

∗
σ

∗
GC contains improper rotations.

Such substitution positions are sequentially numbered as follows:

� = {�1,�2, . . . , �n}. (2)

The group
∗
GCσ governs the stereoskeleton in the form of a coset representation:

GCσ = GC + σGC , (3)

where symbols without an asterisk represent such coset representations (as permuta-
tions), so that GC contains permutations corresponding to proper rotations, while the
coset σGC contains permutations corresponding to improper rotations.

Each permutation contained in Eq. 3 depends on an initial mode of locant num-
bering. For example, let us consider a cyclobutane stereoskeleton shown in Fig. 1,
which belongs to a point group D4h . The eight substitution positions construct a set �,
which is an orbit governed by a coset representation D4h(/Cs) [13]. When we select

the numbering of 1 as an initial mode of locant numbering, a rotation
∗
C4 (∈ ∗

GC ) is
represented by the following permutation:

∗
C4 ∼ C4 =

(
1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5

)
= (1 2 3 4)(5 6 7 8), (4)

where each locant number (i = 1, 2, . . . , 8) appearing as the subscript of �i is adopted

to denote the permutation for the sake of simplicity. Note that the operation
∗
C4 rep-

resents a rotation by 90◦ around the four-fold axis perpendicular to the cyclobutane
plane at its center. On the other hand, when we select another numbering of 2 as an

initial mode of locant numbering, the rotation
∗
C4 (∈ ∗

GC ) is represented by another
permutation:

∗
C4 ∼ C ′

4 =
(

1 2 3 4 5 6 7 8
6 3 4 5 2 7 8 1

)
= (1 6 7 8)(2 3 4 5). (5)
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Fig. 2 Molecular symmetry and isomerization process of a cyclobutane stereoskeleton

In order to discuss the isomerization of cyclopropane derivatives, we should take
account of two aspects: i.e., the conversion of such locant numbering (e.g., σ̃15 for the

conversion 1 → 2) as well as a rotation (e.g.,
∗
C4) of the molecular-symmetry group

(e.g., D4h). Although σ̃15 (= (1 5)(2)(3)(4)(6)(7)(8)) and
∗
C4 (Eq. 4 or Eq. 5) are

represented by permutations on �, they belong to distinct categories of operations.
Hence, we are allowed to postulate that they are commutable as exemplified by Fig. 2.

The conversion shown in the first row of Fig. 2, i.e., 1 → 3 → 4, corresponds to

the product σ̃15 × ∗
C4, where the permutation C4 (Eq. 4) is used as the concrete form

of
∗
C4. The symbol × is used to indicate that the first operation

∗
C4 and the second

operation σ̃15 belong to distinct categories of operations. On the other hand, the second

conversion shown in Fig. 2, i.e., 1 → 2 → 4, corresponds to the product
∗
C4 × σ̃15,

where the permutation C ′
4 (Eq. 5) is used as the concrete form of

∗
C4. As found by

Fig. 2, we obtain the following equation:

σ̃15 × ∗
C4 = ∗

C4 × σ̃15, (6)

where
∗
C4 in the left-hand side corresponds to the permutation C4 (Eq. 5), while

∗
C4 in

the right-hand side corresponds to the permutation C ′
4 (Eq. 5). Obviously, we obtain

σ̃15C4σ̃
−1
15 = C ′

4 as a product of permutations.
The discussion described above can be generalized to give:

σ̃i × ∗
GC = ∗

GC × σ̃i , (7)

where a permutation representation corresponding to the group
∗
GC in the left-hand

side is selected to be GC while a permutation representation corresponding to the

group
∗
GC in the right-hand side is selected to be σ̃i GC σ̃−1

i . Note that the equation
σ̃i GC = GC σ̃i does not always hold true, but there are cases of σ̃i GC 	= GC σ̃i as
products of permutations.
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Fig. 3 Promolecules derived by
applying functions to a
cyclobutane stereoskeleton. The
symbols a/a etc. denote pairs of
enantiomeric proligands
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2.2 Functions for determining stereoisomers

In the present approach, a promolecule (or more concretely, a molecule) is considered
to be generated by putting proligands (or more concretely, ligands) on the substitution
positions of a stereoskeleton. For the concepts of promolecules and proligands, see
[20]. When a cyclobutane stereoskeleton (e.g., 1) is adopted as an example, the process
of the substitution is controlled by a function f exemplified by

f (1) = a, f (2) = b, f (3) = c, f (4) = d,

f (5) = e, f (6) = f, f (7) = g, f (8) = h, (8)

where the symbols f (1) = a, etc. represent the substitution of a proligand ‘a’ for the
position 1, and so on. When the proligands, a, b, . . . , and h, are chiral, the positions
denoted by a locant number with a bar accommodate the corresponding enantiomeric
proligands as follows:

f (1) = a, f (2) = b, f (3) = c, f (4) = d,

f (5) = e, f (6) = f, f (7) = g, f (8) = h, (9)

where the symbol ‘a’ etc. denote the enantiomeric proligand of ‘a’ etc.
The resulting promolecules 5 and 5 shown in Fig. 3 belong to C1, where these

promolecules construct an enantiomeric pair belonging to Cs , which is a subgroup of
the D4h-group of the stereoskeleton. The promolecule 5 (or 5) is converted its hom-
omer under the action of the D4-group (the maximum chiral subgroup of D4h). For
example, the skeleton 3 generated by C ′

4 (Eq. 5) gives an homomer of 5 by applying
the function represented by Eq. 8. So long as we investigate stereoisomerism, such
a set of homomers generated by the elements of D4 can be considered to be a single
molecular entity.

As an extreme case, let us consider the following function:

f (1) = f (2) = f (3) = f (4) = f (5) = f (6) = f (7) = f (8) = a,

f (1) = f (2) = f (3) = f (4) = f (5) = f (6) = f (7) = f (8) = a. (10)
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The resulting promolecules 6 and 6 shown in Fig. 3 belong to D4, which is a subgroup
of the D4h-group of the stereoskeleton. In this case, the elements of D4 generate a set
of identical promolecules, which is also regarded as a set of homomers as an extreme
case. Obviously, such an extreme set can be also considered to be a single molecular
entity, so long as we investigate stereoisomerism.

A more extreme case is cyclobutane itself, where the corresponding function is
represented as follows:

f (1) = f (2) = f (3) = f (4) = f (5) = f (6) = f (7) = f (8) = H,

f (1) = f (2) = f (3) = f (4) = f (5) = f (6) = f (7) = f (8) = H, (11)

where no stereoisomers appear. The resulting promolecule 7 (= 7) shown in Fig. 3
belongs to D4h , which is identical with the D4h-group of the stereoskeleton. As a
matter of course, the elements of D4 generate a set of identical promolecules, which
is a set of homomers as a more extreme case. Hence, the set can be also considered to
be a single molecular entity, so long as we investigate stereoisomerism.

Suppose that each pair of enantiomers is considered to be a single entity. Thereby,
such a pair of enantiomers and an achiral molecule (promolecule) can be treated in
a common theoretical framework. For example, the pair 5/5 (chiral promolecules) is
an entity belonging to Cs . Even if each molecule of the pair is chiral (e.g., C1 for 5
or 5), the pair (e.g., Cs for the pair 5/5) can be treated as a single entity under D4h .
Note that one set of homomers belonging to C1 can be equalized to give a single entity
under D4, the other set of homomers belonging to C1 (of opposite chirality sense) can
be equalized to give a single entity under D4, and these two sets in an enantiomeric
relationship construct an achiral single entity under D4h . On a similar line, the pair
6/6 (chiral promolecules) is an entity belonging to D4h and the molecule 7 (an achiral
promolecules) is self-enantiomeric (achiral) so as to be regarded as an entity belonging
to D4h .

In general,
∗
GCσ (Eq. 3) for specifying the molecular symmetry of a stereoskeleton

is used to treat (self-)enantiomeric pairs of promolecules derived from the stereoskel-
etons. Even if the molecular symmetries of such (self-)enantiomeric pairs are reduced

to subgroups of
∗
GCσ , they can be discussed by using

∗
GCσ in place of such reduced

subgroups, once we adopt the concept of homomers, which are equalized to generate

a single entity under the action of
∗
GC .

3 RS-stereoisomeric groups and stereoisomeric groups

3.1 RS-stereoisomeric groups

By starting from the coset representation GCσ (Eq. 3) of the molecular-symmetric

group
∗
GCσ (Eq. 1), an RS-Stereoisomeric group GCσ σ̃ Î is defined according to a

previous paper [18]. The representative σ appearing in GCσ (Eq. 3) is a reflection
which changes the stereoskeleton into a mirror-image, where the configuration of
each ligand, at the same time, is converted into the opposite configuration to produce
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the corresponding enantiomeric ligand in isolation. Let the symbol σ̃ represent a per-
mutation which has the same cycle structure as σ but causes no alternation of ligand
configurations. Let the symbol Î be a permutation which causes no change of the
stereoskeleton of the molecule but alters ligand configurations. Then the following
two groups are obtained:

GC σ̃ = GC + σ̃GC (12)

GC Î = GC + Î GC . (13)

Definition 1 (RS-Stereoisomeric group) The collection of the cosets appearing in
Eqs. 3, 12, and 13 generates the RS-Stereoisomeric group GCσ σ̃ Î as follows:

GCσ σ̃ Î = GC + σGC + σ̃GC + Î GC , (14)

which contains GCσ (Eq. 3), GC σ̃ (Eq. 12), and GC Î (Eq. 13) as subgroups of index
2.

Obviously, Eqs. 3, 12, and 13 show that σ 2 ∈ GC , σ̃ 2 ∈ GC , and Î 2 ∈ GC . However,
it is not always true that σ 2 = I or σ̃ 2 = I , whereas we may postulate Î 2 = I . As
shown later, we can presume σ 2 = I and σ̃ 2 = I if σ and σ̃ are appropriately selected
for the purpose of investigating organic stereoisomerism.

Because the subgroup GC is a normal subgroup of GCσ σ̃ Î , the coset decomposition
represented by Eq. 14 generates the following factor group of order 4:

ĠCσ σ̃ Î = GCσ σ̃ Î /GC = {
GC , σGC , σ̃GC , Î GC

}
. (15)

The elements of the coset I GC (= GC ) change an original molecule into its hom-
omers, which are regarded as being identical with the original molecule. The coset
σGC corresponds to molecules which are homomeric to each other and are regarded as
being enantiomeric to the original molecule. The coset σ̃GC corresponds to molecules
which are homomeric to each other and are regarded as being RS-diastereomeric to the
original molecule. The coset Î GC corresponds to molecules which are homomeric to
each other and are regarded as being holantimeric to the original molecule. The three
relationships (i.e., enantiomeric, RS-diastereomeric, and holantimeric relationships)
are illustrated by a stereoisogram [16]. A quadruplet of molecules (RS-stereoisomers)
contained in such a stereoisogram is regarded as an equivalence class (an orbit), which
is in turn manipulated as a single entity so as to develop a new scheme for investigating
geometric and stereoisomeric features in stereochemistry [21].

3.2 Axiom of organic stereoisomerism

Suppose that the stereoskeleton governed by the RS-Stereoisomeric group GCσ σ̃ Î
(Eq. 14) has n RS-stereocenters (RS-stereogenic centers), where an epimerization at
the i-th RS-stereocenter is represented by the symbol σ̃i (i = 1, 2, . . . , n). Then the
total epimerization σ̃ is defined as follows:
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Definition 2 (Product of epimerizations) The permutation σ̃ is defined by the product
of epimerization operations at every RS-stereocenters:

σ̃ = σ̃1σ̃2 . . . σ̃i . . . σ̃n =
n∏

i=1

σ̃i , (16)

where every epimerizations at the right-hand side are commutable.

Because of σ̃ 2
i = I , Eq. 16 shows that σ̃ 2 = I . Although the scope of the present

approach is restricted to cases satisfying Eq. 16, this restricted scope is sufficient to
cover organic stereoisomerism by considering the following axiom:

Definition 3 (Axiom of organic stereoisomerism) The reflection operation σ is repre-
sented by the following equation:

σ = σ̃ Î = Î σ̃ . (17)

This is called an axiom of organic stereoisomerism, from which we start the present
approach to the theory of organic stereoisomerism.

It should be noted that, in some discussions on stereoisomerism, an appropriate set
of RS-stereogenic centers is adopted in place of the whole set of n RS-stereogenic
centers. Even in these cases, the adopted set of epimerizations is considered to satisfy
Eqs. 16 and 17.

Because σ̃i and Î are commutable, σ̃ and Î are also commutable so that the reflec-
tion operation σ (= σ̃ Î ) incorporated in processes of stereoisomerism satisfies σ 2 =
(̃σ Î )2 = σ̃ 2 Î 2 = I . Hence, we are able to generate basic groups for discussing
stereoisomerism:

H Î = {I, Î } (18)

Hσ̃ = {I, σ̃ } (19)

Hσ = {I, σ̃ Î } = {I, σ }, (20)

which correspond to GC Î (Eq. 13), GC σ̃ (Eq. 12), and GCσ (Eq. 3). By starting from
Eqs. 18–20, we define a stereoisogram group Hs as follows:

Definition 4 (Stereoisogram group) The stereoisogram group Hs contains the trans-
versal corresponding to Eq. 14, i.e.,

Hs = {I, σ, σ̃ , Î } = {I, σ̃ Î , σ̃ , Î }, (21)

is a group under presumption of Eqs. 16 and 17.

Note that such relationships as σ σ̃ = σ̃ Î σ̃ = Î ∈ Hs show that the set Hs is closed
under multiplication operations. Because Hs specifies a stereoisogram, it is called a

123



104 J Math Chem (2011) 49:95–162

stereoisogram group.1 Because the stereoisogram group Hs (Eq. 21) is concerned with
the global symmetry of the stereoskeleton at issue, it is more specifically called a main
stereoisogram group if necessary.

The RS-stereoisomeric group GCσ σ̃ Î (Eq. 14) is rewritten to the direct product of
Hs (Eq. 21) and GC , i.e.,

GCσ σ̃ Î = Hs × GC (22)

= Hσ̃ × H Î × GC = Hσ̃ × Hσ × GC = Hσ × H Î × GC (23)

Accordingly, the coset decomposition represented by Eq. 14 is formally represented
by the following equation:

GCσ σ̃ Î = (I + σ + σ̃ + Î )
×
GC = (I + σ̃ Î + σ̃ + Î )

×
GC (24)

= (I + σ̃ )(I + Î )
×
GC = (I + σ̃ )(I + σ)

×
GC = (I + σ)(I + Î )

×
GC , (25)

because we are able to put
×
GC = {I } × GC for Eq. 22 and

×
GC = {I } × {I } × GC

for each direct product of Eq. 23. For the sake of simplicity, such symbols as
×
GC are

used in the present article in order to show coset decompositions of direct-product
groups, where the part {I }×{I }×· · ·×{I } is appropriately interpreted without losing
generality.

For example, let us consider a cyclopropane stereoskeleton 1 (Fig. 4a), where a

point group D4h is selected as the corresponding molecular-symmetry group (
∗
GCσ )

and its coset representation D4h(/Cs) is regarded as GCσ (Eq. 3). For the sake of sim-
plicity, the coset representation D4h(/Cs) is equalized to D4h , where D4h corresponds
to GCσ and D4 corresponds to GC .

When we select arbitrarily the original numbering shown by the structure 1 (Fig. 4),
we obtain following permutations:

I =
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
= (1)(2)(3)(4)(5)(6)(7)(8) (26)

σh =
(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)
= (1 5)(2 6)(3 7)(4 8), (27)

where the reflection satisfies σ 2
h = I . They are used to generate the following coset

representation:

D4h = D4 + σhD4. (28)

1 An RS-stereoisomeric group generated from the point group S4 may be S4σ̃ Î = C2+S4C2+S̃4C2+ Î C2.
Although the corresponding factor group S4σ̃ Î /C2 can be constructed according to Eq. 15, the transver-
sal {I, S4, S̃4, Î } is not a group. So long as we consider an epimerization σ̃ at each pair of two positions
belonging to the coset representation S4(/C2), we obtain σ̃ Î = Î σ̃ . This means that we may adopt a group
{I, σ̃ Î , σ̃ , Î } in place of the transversal. More complicated cases are open to the future investigation.
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Fig. 4 Numbering of a cyclobutane stereoskeleton for specifying stereoisomeric cyclobutane derivatives

By starting from the permutations of I and σh , we obtain the following permutations:

σ̃h =
(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)
= (1 5)(2 6)(3 7)(4 8) (29)
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Î =
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
= (1)(2)(3)(4)(5)(6)(7)(8) (30)

in order to construct the corresponding RS-stereoisomeric group and related groups:

D4σ̃h = D4 + σ̃hD4 (31)

D4 Î = D4 + Î D4 (32)

D4hσ̃h Î = D4 + σhD4 + σ̃hD4 + Î D4 (33)

Let the symbols σ̃15, σ̃26, σ̃37, and σ̃48 be epimerization operations of cyclopro-
pane stereoskeletons, which respectively correspond to 2 (Fig. 4b), 10 (Fig. 4c), 12
(Fig. 4d), and 14 (Fig. 4e), as shown in Fig. 4. Then, Eqs. 16 and 17 for this case are
obtained as follows:

σ̃h = σ̃15σ̃26σ̃37σ̃48 (34)

σh = σ̃h Î , (35)

where the element σ̃h corresponds to 8, while the element σh corresponds to 1 (Fig. 4a).
According to Eq. 15, the coset decomposition represented by Eq. 33 generates the

following factor group:

Ḋ4hσ̃h Î = D4hσ̃h Î /D4 = {D4, σhD4, σ̃hD4, Î D4}, (36)

which is isomorphic to the factor group ĠCσ σ̃ Î (Eq. 15).
When the coset I D4 (= D4) appearing in Eq. 33 (or Eq. 36) corresponds to the

numbering of 1, the other cosets σhD4, σ̃hD4, and Î D4 correspond to 1, 8, and 8,
respectively, as found in Fig. 4a. The quadruplet of 1, 1, 8, and 8 constructs a stere-
oisogram according to the formulation of [16].

The groups corresponding to Eqs. 18—21 are also obtained for this case. In partic-
ular, the stereoisogram group Hs for this case is obtained as follows:

Hs = {I, σh, σ̃h, Î } = {I, σ̃h Î , σ̃h, Î }, (37)

where the concrete forms of the elements are given by Eqs. 26, 27, 29, and 30. These
elements again correspond to 1, 1, 8, and 8, which construct a quadruplet contained
in the stereoisogram shown in Fig. 4a.

3.3 Epimerizations

In the next step of the present approach, each epimerization operation is taken into
consideration so as to give a respective group:

Definition 5 (Epimerization group) Let us examine the effect of an epimerization
which is represented by the symbol σ̃i (i = 1, 2, . . . , n):

Hσ̃i = {I, σ̃i }, (38)

123



J Math Chem (2011) 49:95–162 107

which is called an epimerization group at the i-th RS-stereocenter.

Each epimerization group is combined with the RS-stereoisomeric group as follows:

Definition 6 (Local symmetry group at an RS-stereogenic center) The direct product
of Hσ̃i (Eq. 38) and GCσ σ̃ Î (Eq. 14 or Eq. 22) is constructed as follows:

Gσ̃i

Cσ σ̃ Î
= Hσ̃i × GCσ σ̃ Î , (39)

which is called a local symmetry group at an RS-stereogenic center.

It should be noted here that although GCσ σ̃ Î is a permutation group, a similar rela-
tionship to Eq. 7 is presumed because Eq. 39 is defined in terms of a direct product.

By keeping Eq. 38 in mind, the direct product represented by Eq. 39 is formally
rewritten as follows:

Gσ̃i

Cσ σ̃ Î
= (I + σ̃i ) × GCσ σ̃ Î (40)

= I × GCσ σ̃ Î + σ̃i × GCσ σ̃ Î (41)

= ×
GCσ σ̃ Î + σ̃i

×
GCσ σ̃ Î . (42)

For the purpose of showing that Eq. 42 is a coset decomposition corresponding to
Eq. 39, we adopt the following convention:

×
GCσ σ̃ Î = I × GCσ σ̃ Î = {I } × GCσ σ̃ Î . (43)

This convention means that the identity group {I } is a normal subgroup of Hσ̃i and that
GCσ σ̃ Î itself is a normal subgroup of GCσ σ̃ Î . Hence, the resulting equation (Eq. 42)

can be regarded as a coset decomposition of the direct product Gσ̃i

Cσ σ̃ Î
(Eq. 39) by

×
GCσ σ̃ Î (Eq. 43), which is is a normal subgroup of Gσ̃i

Cσ σ̃ Î
.

The coset decomposition (Eq. 42) generates the following set of cosets:

Gσ̃i

Cσ σ̃ Î

/ ×
GCσ σ̃ Î = { ×

GCσ σ̃ Î , σ̃i
×
GCσ σ̃ Î }, (44)

which is a factor group of order 2. The set of cosets (Eq. 44) generates a coset represen-

tation Gσ̃i

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
, so that we are able to the subduction (↓ Hσ̃i ) of the coset

representation according to the USCI (unit-subduced-cycle-index) approach devel-
oped by Fujita [13]:

↓ Hσ̃i

×
GCσ σ̃ Î σ̃i

×
GCσ σ̃ Î

×I
×
GCσ σ̃ Î σ̃i

×
GCσ σ̃ Î

×σ̃i σ̃i
×
GCσ σ̃ Î

×
GCσ σ̃ Î

(45)
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Hence, the set represented by (Eq. 44) is transitive under the subduction (↓ Hσ̃i ), where
the group Hσ̃i is equalized to Hσ̃i ×{I } which is a normal subgroup of the direct prod-
uct represented by Eq. 39. According to the notation of Fujita’s USCI approach, Eq. 45
is represented as follows:

Gσ̃i

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
↓ Hσ̃i = Hσ̃i (/{I }). (46)

The direct product represented by Eq. 39 is further expanded by means of Eq. 23
so as to generate the following equation:

Gσ̃i

Cσ σ̃ Î
= Hσ̃i × GCσ σ̃ Î = Hσ̃i × Hσ × H Î × GC , (47)

where a similar relationship to Eq. 7 is presumed because Eq. 47 is defined in terms
of a direct product. The elements of the partial direct product (Hσ̃i × Hσ ) contained
in Eq. 47 can be obtained by collecting the terms appearing in a formal equation
(I + σ̃i )(I + σ) so that we obtain:

Definition 7 (Epimeric stereoisogram group) An epimeric stereoisogram (defined
below) is controlled by the following group:

Hσ̃i
σ = Hσ̃i × Hσ

= {I, σ̃i , σ, σ̃iσ } = {I, σ̃i , σ̃ Î , σ̃i σ̃ Î }, (48)

which is called an epimeric stereoisogram group.

On a similar line, the terms appearing in a formal equation (I + σ̃i )(I + σ̃ )(I + Î ) is
collected to generate the elements of the direct product Hσ̃i × Hσ × H Î contained in
Eq. 47 so that we obtain:

(
Hσ̃i × Hσ

)× H Î

= {I, σ̃i , σ, σ̃iσ ; Î , Î σ̃i , Îσ, Î σ̃iσ } = {I, σ̃i , σ, σ̃iσ ; Î , Î σ̃i , σ̃ , σ̃i σ̃ }, (49)

which is a group of order 8. By keeping Eq. 49 in mind, the direct product represented
by Eq. 47 is formally transformed into the following equation:

Gσ̃i

Cσ σ̃ Î
= (I + σ̃i )(I + σ̃ )(I + Î ) × GC (50)

= I × GC + σ̃i × GC + σ × GC + σ̃iσ × GC

+ Î × GC + Î σ̃i × GC + σ̃ × GC + σ̃i σ̃ × GC (51)

= ×
GC + σ̃i

×
GC + σ

×
GC + σ̃iσ

×
GC + Î

×
GC + Î σ̃i

×
GC + σ̃

×
GC + σ̃i σ̃

×
GC ,(52)

where we put

×
GC = I × GC = {I } × {I } × {I } × GC (53)
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in accord with Eq. 47. The resulting equation (Eq. 52) can be regarded as a coset

decomposition of the direct product Gσ̃i

Cσ σ̃ Î
(Eq. 47) by

×
GC (Eq. 53), which is is a

normal subgroup of Gσ̃i

Cσ σ̃ Î
. Note that each identity group {I } is a normal subgroup

of Hσ̃i , Hσ , or H Î and that GC itself is a normal subgroup of GC .
The coset decomposition (Eq. 52) generates the following set of cosets:

Gσ̃i

Cσ σ̃ Î
/

×
GC =

{ ×
GC , σ̃i

×
GC , σ

×
GC , σ̃iσ

×
GC , Î

×
GC , Î σ̃i

×
GC , σ̃

×
GC , σ̃i σ̃

×
GC

1 2 3 4 5 6 7 8

}
, (54)

where the eight cosets are numbered sequentially. The set of cosets (Eq. 54) is a
factor group of order 8. The set of cosets (Eq. 54) generates a coset representation

Gσ̃i

Cσ σ̃ Î
(/

×
GC ) so that we are able to the subduction (↓ Hσ̃i

σ =↓ Hσ̃i × Hσ ) of the coset
representation according to the USCI (unit-subduced-cycle-index) approach devel-
oped by Fujita [13]:

↓ Hσ̃i
σ

×
GC , σ̃i

×
GC , σ

×
GC , σ̃iσ

×
GC , Î

×
GC , Î σ̃i

×
GC , σ̃

×
GC , σ̃i σ̃

×
GC

(=↓ Hσ̃i × Hσ ) 1 2 3 4 5 6 7 8
×I 1 2 3 4 5 6 7 8
×σ̃i 2 1 4 3 6 5 8 7
×σ 3 4 1 2 7 8 5 6
×σ̃iσ 4 3 2 1 8 7 6 5

(55)

Hence, the set represented by Eq. 54 is divided into two sets of cosets according to
the following subduction:

Gσ̃i

Cσ σ̃ Î
(/

×
GC ) ↓ Hσ̃i

σ = 2Hσ̃i
σ (/{I }), (56)

where the right-hand side represents the regular representation of the group Hσ̃i
σ (=

Hσ̃i × Hσ ). Note that Hσ̃i
σ × {I } × {I } (= Hσ̃i × Hσ × {I } × {I }) is equalized to Hσ̃i

σ

(= Hσ̃i × Hσ ). As a result, Eq. 52 is divided into two parts as follows:

Gσ̃i

Cσ σ̃ Î
= Hσ̃i

σ × GC + Î × Hσ̃i
σ × GC (57)

= Hσ̃i × Hσ × GC + Î × Hσ̃i × Hσ × GC

= { ×
GC + σ̃i

×
GC + σ

×
GC + σ̃iσ

×
GC } + { Î

×
GC + Î σ̃i

×
GC + σ̃

×
GC + σ̃i σ̃

×
GC },

(58)

where Hσ̃i
σ × {I } × GC (= Hσ̃i × Hσ × {I } × GC ) is equalized to Hσ̃i

σ × GC (=
Hσ̃i × Hσ × GC ).

The first set of four cosets parenthesized by a pair of braces in Eq. 58 is combined
by Eq. 48 to give the definition of epimeric RS-stereoisomeric group:
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Definition 8 (Epimeric RS-stereoisomeric group)

Gσ̃i
Cσ = Hσ̃i

σ × GC (59)

= Hσ̃i × Hσ × GC

= ×
GC + σ̃i

×
GC + σ

×
GC + σ̃iσ

×
GC , (60)

where the epimeric stereoisogram group Hσ̃i
σ has been defined by Eq. 48.

The epimeric RS-stereoisomeric group Gσ̃i
Cσ defined by Eq. 59 or Eq. 60 describes the

symmetrical feature of the corresponding stereoisogram, which is named as follows:

Definition 9 (Epimeric stereoisograms and holantimeric stereoisograms)
A stereoisogram corresponding to the epimeric RS-stereoisomeric group Gσ̃i

Cσ defined
by Eq. 59 or Eq. 60 (for the first set of four cosets appearing in Eq. 58) is called an epi-
meric stereoisogram. A stereoisogram corresponding to the second set of four cosets
appearing in Eq. 58 is called a holantimeric stereoisogram.

The naming described in Definition 9 stems from the following examination. By
combining Eq. 56 with Eq. 58 or by referring to Eq. 60, we obtain the following set
of cosets:

Gσ̃i
Cσ

/ ×
GC = Hσ̃i

σ × GC
/ ×

GC = Hσ̃i × Hσ × GC
/ ×

GC

=
{ ×

GC , σ̃i
×
GC , σ

×
GC , σ̃iσ

×
GC

}
, (61)

where
×
GC is equalized to {I }×GC or {I }×{I }×GC . Because the transitivity of Eq. 61

is shown in the left part of the table collected in Eq. 55, the set (Eq. 61) corresponds
to a stereoisogram, which is called an epimeric stereoisogram (Definition 9). See also
Eq. 48 (an epimeric stereoisogram group Hσ̃i

σ ).
Moreover, the second coset of Eq. 57 is alternatively interpreted when it is converted

into

Î × Hσ̃i × Hσ × GC = Hσ̃i × Hσ × (
Î × GC

)
. (62)

Because the parenthesized direct product Î × GC corresponds to the holantimer of a
molecule represented by GC , the holantimer belonging to Î × GC gives a stereoiso-
gram (called a holantimeric stereoisogram), which corresponds to the stereoisogram
for Eq. 61.

The two kinds of stereoisograms (epimeric stereoisograms and holantimeric ste-
reoisograms) can be commonly discussed by taking account of Eq. 47. Thus, we
construct a set of cosets as follows:
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Gσ̃i

Cσ σ̃ Î

/ ×
GC Î = Gσ̃i

Cσ σ̃ Î

/
H Î × GC

= Hσ̃i × Hσ × H Î × GC
/

H Î × GC

= {
I × H Î × GC , σ̃i × H Î × GC , σ × H Î × GC , σ̃i × σH Î × GC

}

=
{ ×

GC Î , σ̃i
×
GC Î , σ

×
GC Î , σ̃iσ

×
GC Î

}
, (63)

where
×
GC Î is equalized to a formal direct product {I }×{I }×H Î ×GC , because GC Î

(Eq. 13) is regarded as being equal to H Î × GC or equivalently to
×
GC + Î

×
GC selected

from Eq. 58. Because of the nature of direct products, the sets of cosets represented
by Eqs. 61 and 63 are factor groups of order 4, which are isomorphic to each other.

The factor groups Gσ̃i
Cσ

/ ×
GC (Eq. 61) and Gσ̃i

Cσ σ̃ Î

/ ×
GC Î (Eq. 63) have a common

transversal, which has appeared as Hσ̃i
σ in Eq. 48. Because Hσ̃i

σ specifies a pair of
stereoisograms (an epimeric and an holantimeric stereoisogram), it is one of stereois-
ogram groups. Because the stereoisogram group Hσ̃i

σ (Eq. 48) is concerned with the
local symmetry of the stereoskeleton at issue, it is more specifically called an epimeric
stereoisogram group if necessary (Definition 7).

For example, let us the symbol σ̃15 represent an epimerization at the C1 atom of
1. This epimerization converts the stereoisogram shown in Fig. 4a into another ste-

reoisogram shown in Fig. 4b, which corresponds to the coset σ̃15
×
D4hσ̃h Î by applying

Eq. 42 to this case:

Dσ̃15

4hσ̃ Î
= Hσ̃15 × D4hσ̃h Î = ×

D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃15
×
D4hσ̃ Î︸ ︷︷ ︸

2,2,9,9

(64)

where the group Hσ̃15 (= {I, σ̃15}) is used in agreement with Eq. 39. By applying
Eq. 52 to this case, we obtain the following coset decomposition:

Dσ̃15

4hσ̃ Î
=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ Î
×
D4︸︷︷︸
8

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃15

×
D4︸ ︷︷ ︸

2

+ σ̃15σh
×
D4︸ ︷︷ ︸

2

+ σ̃15σ̃h
×
D4︸ ︷︷ ︸

9

+ σ̃15 Î
×
D4︸ ︷︷ ︸

9

⎫⎪⎬
⎪⎭ (65)

=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σ̃15
×
D4︸ ︷︷ ︸

2

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃15σh
×
D4︸ ︷︷ ︸

2

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩ Î

×
D4︸︷︷︸
8

+ σ̃15 Î
×
D4︸ ︷︷ ︸

9

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ σ̃15σ̃h
×
D4︸ ︷︷ ︸

9

⎫⎪⎬
⎪⎭ (66)
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Fig. 5 Epimeric and holantimeric stereoisograms

The two parts appearing in Eq. 65 are generated by means of Eq. 64, while the two
parts appearing in Eq. 66 are generated by applying Eq. 58 to this case.

The cosets appearing in the first part of Eq. 65, i.e.,

{×
D4, σh

×
D4, σ̃h

×
D4, Î

×
D4

}
cor-

respond respectively to 1, 1, 8, and 8, which are contained in the stereoisogram shown
in Fig. 4a. On the other hand, the cosets appearing in the second part of Eq. 65, i.e.,{
σ̃15

×
D4, σ̃15σh

×
D4, σ̃15σ̃h

×
D4, σ̃15 Î

×
D4

}
, correspond respectively to 2, 2, 9, and 9, which

are contained in the stereoisogram shown in Fig. 4b.
The set Dσ̃15

4hσ̃ Î
(Eq. 64) has been noted in a previous report (Eq. 9 of [19]), where

we put Dσ̃15

4hσ̃ Î
= D4hσ̃ Î + σ̃15D4hσ̃ Î in place of Eq. 64. Strictly speaking, however,

the set due to the previous formulation does not necessarily construct a group because
the equation (1 5)D4hσ̃ Î (1 5) (where σ̃15 = (1 5)) is not equal to D4hσ̃ Î . The present
formulation by using the direct product (Eq. 64) is suitable for investigating stereo-
isomerism by taking account of Eq. 7.

The first set of cosets of Eq. 66, i.e.,

{×
D4, σ̃15

×
D4, σh

×
D4, σ̃15σh

×
D4

}
, corresponds

to 1, 2, 1, and 2, which are collected to generate an epimeric stereoisogram shown
in Fig. 5a. The conversion along with the horizontal axis (S-axis) corresponds to an
epimerization at the C1 atom (̃σ15) so that the original stereoskeleton 1 is RS-diaste-
reomeric to 2 at the C1 atom. In other words, the epimeric stereoisogram (Fig. 5a)
indicates the local symmetry at the C1 atom. To clarify this feature, a solid circle is
added at the C1 atom and each skeleton number is attached by the subscript 1 for
representing the C1 atom (e.g., 11).

On the other hand, the second set of cosets, i.e.,

{
Î

×
D4, σ̃15 Î

×
D4, σ̃h

×
D4, σ̃15σ̃h

×
D4

}

which appears in Eq. 66, corresponds to 8, 9, 8, and 9. These stereoskeletons are col-
lected to generate a holantimeric stereoisogram shown in Fig. 5b. Obviously, Fig. 5b
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is available from Fig. 5a by changing each locant number into the one with an overbar
(i.e., by alternating ligand configurations).

By applying Eq. 63 to this case, we obtain:

Dσ̃15

4σ σ̃ Î

/ ×
D4 Î =

⎧⎪⎨
⎪⎩

×
D4 Î︸︷︷︸
1,8

, σ̃15
×
D4 Î︸ ︷︷ ︸

2,9

, σh
×
D4 Î︸ ︷︷ ︸

1,8

, σ̃15σh
×
D4 Î︸ ︷︷ ︸

2,9

⎫⎪⎬
⎪⎭ , (67)

where we put D4 Î = H Î × D4 and
×
D4 Î is equalized to {I } × {I } × D4 Î (= {I } ×

{I } × H Î × D4). Each of the cosets appearing in Eq. 67 correspond to each pair of a
molecule and its holantimer, i.e., {1, 8}{2, 9}{1, 8}, and {2, 9}.

On a similar line, an epimerization σ̃26 at the C2 atom of 1 generates a stereoiso-
gram shown in Fig. 4c. Similar results to Eqs. 64, 65, and 66 are obtained by applying
Eq. 42 to this case:

Dσ̃26

4hσ̃ Î
= Hσ̃26 × D4hσ̃ Î = ×

D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

10,10,11,11

(68)

=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ Î
×
D4︸︷︷︸
8

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃26

×
D4︸ ︷︷ ︸

10

+ σ̃26σh
×
D4︸ ︷︷ ︸

10

+ σ̃26σ̃h
×
D4︸ ︷︷ ︸

11

+ σ̃26 Î
×
D4︸ ︷︷ ︸

11

⎫⎪⎬
⎪⎭ (69)

=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σ̃26
×
D4︸ ︷︷ ︸

10

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃26σh
×
D4︸ ︷︷ ︸

10

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩ Î

×
D4︸︷︷︸
8

+ σ̃26 Î
×
D4︸ ︷︷ ︸

11

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ σ̃26σ̃h
×
D4︸ ︷︷ ︸

11

⎫⎪⎬
⎪⎭ (70)

where the group Hσ̃26 (= {I, σ̃26}) is used in agreement with Eq. 39. The second set
of cosets appearing in Eq. 69 corresponds to Fig. 4c. The two sets of cosets appearing
in Eq. 70 generates epimeric and holantimeric stereoisograms in a parallel way to the
derivation of Fig. 5a and b.

Similarly, an epimerization σ̃37 at the C3 atom of 1 generates a stereoisogram shown
in Fig. 4d. On a similar line to Eqs. 64, 65, and 66, the application of Eq. 42 to this
case gives:

Dσ̃37

4hσ̃ Î
= Hσ̃37 × D4hσ̃ Î = ×

D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

12,12,13,13

(71)
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=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ Î
×
D4︸︷︷︸
8

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃37

×
D4︸ ︷︷ ︸

12

+ σ̃37σh
×
D4︸ ︷︷ ︸

12

+ σ̃37σ̃h
×
D4︸ ︷︷ ︸

13

+ σ̃37 Î
×
D4︸ ︷︷ ︸

13

⎫⎪⎬
⎪⎭ (72)

=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σ̃37
×
D4︸ ︷︷ ︸

12

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃37σh
×
D4︸ ︷︷ ︸

12

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩ Î

×
D4︸︷︷︸
8

+ σ̃37 Î
×
D4︸ ︷︷ ︸

13

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ σ̃37σ̃h
×
D4︸ ︷︷ ︸

13

⎫⎪⎬
⎪⎭ (73)

where the group Hσ̃37 (= {I, σ̃37}) is used in agreement with Eq. 39. The second set
of cosets appearing in Eq. 72 corresponds to Fig. 4d. The two sets of cosets appearing
in Eq. 73 generates epimeric and holantimeric stereoisograms in a parallel way to the
derivation of Fig. 5a and b.

When a further epimerization at the C4 atom of 1 is represented by the symbol σ̃48,
the corresponding stereoisogram is available as shown in Fig. 4d. On a similar line to
Eqs. 64, 65, and 66, the application of Eq. 42 to this case gives:

Dσ̃48

4hσ̃ Î
= Hσ̃48 × D4hσ̃ Î = ×

D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

14,14,15,15

(74)

=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ Î
×
D4︸︷︷︸
8

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃48

×
D4︸ ︷︷ ︸

14

+ σ̃48σh
×
D4︸ ︷︷ ︸

14

+ σ̃48σ̃h
×
D4︸ ︷︷ ︸

15

+ σ̃48 Î
×
D4︸ ︷︷ ︸

15

⎫⎪⎬
⎪⎭ (75)

=

⎧⎪⎨
⎪⎩

×
D4︸︷︷︸

1

+ σ̃48
×
D4︸ ︷︷ ︸

14

+ σh
×
D4︸ ︷︷ ︸
1

+ σ̃48σh
×
D4︸ ︷︷ ︸

14

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩ Î

×
D4︸︷︷︸
8

+ σ̃48 Î
×
D4︸ ︷︷ ︸

15

+ σ̃h
×
D4︸ ︷︷ ︸
8

+ σ̃48σ̃h
×
D4︸ ︷︷ ︸

15

⎫⎪⎬
⎪⎭ (76)

where the group Hσ̃48 (= {I, σ̃48}) is used in agreement with Eq. 39. The second set
of cosets appearing in Eq. 75 corresponds to Fig. 4e. The two sets of cosets appearing
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in Eq. 76 generate epimeric and holantimeric stereoisograms in a parallel way to the
derivation of Fig. 5a and b.

3.4 Stereoisomeric groups for stereoskeletons

3.4.1 Global symmetries of stereoskeletons

Multiple epimerization and formulation of stereoisomeric groups By starting from
the epimerization groups Hσ̃i (Eq. 38), the multiple epimerization group for a set of
n RS-stereocenters is defined as the direct product of such epimerization groups:

Definition 10 (Multiple epimerization groups)

H̃ =
n∏

i=1

Hσ̃i = Hσ̃1 × Hσ̃2 × · · · × Hσ̃n , (77)

where we employ Eq. 16. Each element of the multiple epimerization group (Eq. 77)
is called a multiple epimerization.

Because each element of Eq. 77 can be represented by an appropriate product of epi-
merizations selected from σ̃i (i = 1, 2, . . . , n) (cf. Eq. 16), the coset decomposition
of Eq. 77 by {I } is formally represented by the following equation:

H̃ =
n∏

i=1

(I + σ̃i ). (78)

Because all of the epimerizations (̃σi , i = 1, 2, . . . n) are commutable and satisfy
σ̃ 2

i = I , the 2n terms generated by the expansion of the right-hand side of Eq. 78 are
regarded as the elements (multiple epimerizations) contained in the group H̃ of order
2n . Then, the product represented by Eq. 78 is a coset decomposition of the group H̃ by
the trivial coset {I } (= {I }×· · ·×{I }). By combining Eq. 3 with Eq. 78, we construct
a direct product, which is important to discuss stereoisomerism comprehensively:

Definition 11 (Stereoisomeric groups) The direct product of Eqs. 3 and 78, i.e.,

̂̃GCσ = H̃ × GCσ (79)

= H̃ × Hσ × GC =
[

n∏
i=1

(I + σ̃i )

]
× GCσ =

[
n∏

i=1

(I + σ̃i )

]
× Hσ × GC , (80)

is called a stereoisomeric group.

The definition of a stereoisomeric group (Eq. 79 or Eq. 80) does not explicitly contains
an RS-stereoisomeric group defined by Eq. 14. As proven in the following paragraphs,
however, such a stereoisomeric group contains an RS-stereoisomeric group as a sub-
group. This fact provides us with a key for developing the theory of stereoisomerism
in harmony of molecular symmetry.
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RS-stereoisomeric groups versus stereoisomeric groups The expansion of Eq. 78
gives 2n terms (multiple epimerizations), each of which is represented as follows:

σ̃[ω] =
n∏

i=1

σ̃
ωi
i , (81)

where the symbol ωi represents a bit and satisfies ωi = 0 or 1 (i = 1, 2, . . . , n) and
where the [ω] represents an array of bits:

[ω] = [ω1, ω2, . . . , ωn], (82)

which is selected from the 2n combinations of n bits. Let the symbol ω be the sum of
the bits contained in the bit array [ω]:

ω = ω1 + ω2 + · · · + ωn, (83)

which is an integer from 0 to n. The bit inversion of the bit array (Eq. 82) generates
the complementary bit array [ω̃] as follows:

[ω̃] = [ω̃1, ω̃2, . . . , ω̃n], (84)

where we put ω̃i = 0 if ωi = 1, while ω̃i = 1 if ωi = 0. Thereby, we obtain the
complementary multiple epimerization of σ̃[ω] as follows:

σ̃[ω̃] =
n∏

i=1

σ̃
ω̃i
i , (85)

where

ω̃ = ω̃1 + ω̃2 + · · · + ω̃n . (86)

The definitions of ω (Eq. 83) and ω̃ (Eq. 86) indicate the following obvious relation-
ships:

ωi + ω̃i = 1 (for i = 1, 2, . . . , n) and ω + ω̃ = n. (87)

Because of Eq. 16 and σ̃ 2
i = I , we obtain:

σ̃[ω̃] = σ̃[ω]σ̃ . (88)

The multiple epimerization σ̃[ω] (Eq. 81) and its complementary multiple epimer-
ization σ̃[ω̃] (Eq. 85) appear pairwise in Eq. 78 (or Eq. 80) so that σ̃[ω] for ω ≤ n

2
corresponds to σ̃[ω̃] for ω̃ ≥ n

2 in a one-to-one fashion (n ≥ 2). Because of Eq. 88, the
set of σ̃[ω] (Eq. 81) plus σ̃ σ̃[ω] (Eq. 88) for ω ≤ n

2 covers all of the terms contained
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in Eq. 78 (or Eq. 80). Hence, the following equation is obtained as an alternative
expression to Eq. 78:

H̃ =
∑

ω≤n/2

(
σ̃[ω] + σ̃[ω̃]

) =
∑

ω≤n/2

(
σ̃[ω] + σ̃[ω]σ̃

) =
∑

ω≤n/2

σ̃[ω](I + σ̃ ). (89)

The range of summations should be noted. When n = 1 (ω = 0), we obtain σ̃[ω] = I
and σ̃[ω̃] = σ̃ , which can be regarded as an extreme case of Eq. 89. When n is odd
(n > 1), we are able to select σ̃[ω] for ω < n

2 without ambiguity. On the other hand,
when n is even, there is an ambiguity in the selection of σ̃[ω] for ω = n

2 . Although
either multiple epimerization of each pair (Eqs. 81 and 88) may be selected without
losing generality, it is convenient to select a set of multiple epimerizations σ̃[ω] (for
ω = n

2 ) which contain a fixed epimerization σ̃ j (i.e., ω j = 1 for a fixed j in Eq. 81).

Definition 12 (Pivot epimerizations) As such a fixed epimerization, any epimeriza-
tion can be selected from the n epimerizations (n: even) but it is temporarily fixed
to continue further discussions. We refer to the fixed epimerization σ̃ j as a pivot
epimerization.

This selection is shown to be valid by the following examination. By selecting n/2
epimerizations among the n epimerizations (n: even) to generate multiple epimeriza-
tions of ω = n/2 (and ω̃ = n/2), the number of such multiple epimerizations (Eq. 81
plus Eq. 88) is calculated to be:

n A =
(

n

n/2

)
= n!

(n/2)!(n/2)! (90)

By selecting a pivot epimerization σ̃ j (i.e., ω j = 1 for a fixed j in Eq. 81) to be fixed,
the number of the corresponding multiple epimerizations is reduced into the following
one:

nB =
(

n − 1

n/2 − 1

)
= (n − 1)!

(n/2)!(n/2 − 1)! . (91)

Hence we obtain n A/nB = 2 so that we are able to select the nB (= n A/2) multiple
epimerizations as σ̃[ω] for ω = n

2 .
Let us select a multiple epimerization σ̃[ω(1)] which has the following array of bits:

[ω(1)] = [1, ω2, . . . , ωn], (92)

where σ̃1 (corresponding to ω1 = 1) is tentatively fixed as a pivot epimerization. Then,
the corresponding complementary multiple epimerization σ̃[ω̃(1)] is determined to have
the following array of bits:

[ω̃(1)] = [0, ω̃2, . . . , ω̃n]. (93)

Obviously, such a pair of σ̃[ω(1)] and σ̃[ω̃(1)] appears concurrently when the bits ωi

(i = 2, . . . , n) run to cover all of the multiple epimerizations. This means that the
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set of multiple epimerizations (Eq. 89) are divided into two sets, where either set is
characterized by the presence of the pivot epimerization σ̃1, while the other set is not.
Although this fact seems to be trivial, it plays a crucial role in categorization of stereo-
isomers, e.g., the Fischer-Rosanoff convention for naming d- and l-glyceraldehydes
and the relevant series of sugars [5]. Note that any epimerization other than σ̃1 may be
selected as a pivot epimerization without losing generality. This fact will be discussed
after the introduction of Theorem 1.

The direct product of Eqs. 89 and 20 is calculated as follows:

H̃ × Hσ =
∑

ω≤n/2

σ̃[ω](I + σ̃ )(I + σ)=
∑

ω≤n/2

σ̃[ω] × Hs=
∑

ω≤n/2

σ̃[ω] × Hσ × H Î ,

(94)

where we use Eq. 21. The meaning of Eq. 94 is that permutations (H̃) and reflections
(Hσ ) are combined to give a foundation for discussing stereoisomerism, where both
mirror-image transformations of a given stereoskeleton (Hσ ) and alternations of ligand
configurations (H Î ) are taken into consideration.

Then, Eq. 94 is introduced into Eq. 80 to an alternative expression of the stereoiso-
meric group ̂̃GCσ (= H̃ × GCσ ) as follows:

̂̃GCσ = H̃ × GCσ = H̃ × Hσ × GC =
∑

ω≤n/2

σ̃[ω] × Hσ × H Î × GC (95)

=
∑

ω≤n/2

σ̃[ω] × GCσ σ̃ Î =
∑

ω≤n/2

σ̃[ω]
×
GCσ σ̃ Î (96)

where Eqs. 22 and 23 are used. The last equation of Eq. 96 can be regarded as a coset

decomposition of the stereoisomeric group ̂̃GCσ by it subgroup
×
GCσ σ̃ Î (Eq. 43), which

is isomorphic to the RS-stereoisomeric group GCσ σ̃ Î . Because of |̂̃GCσ | = 2n|GCσ |
and | ×

GCσ σ̃ Î | = 2|GCσ |, we obtain:

∣∣∣̂̃GCσ

∣∣∣/
∣∣∣∣

×
GCσ σ̃ Î

∣∣∣∣ = 2n−1, (97)

which represents the number of cosets contained in Eq. 96.
In the case of a cyclobutane stereoskeleton, Eq. 78 is calculated by means of Eq. 34

so as to generate the corresponding multiple epimerization group as follows:

H̃ = (I + σ̃15)(I + σ̃26)(I + σ̃37)(I + σ̃48) (98)

= (I + σ̃h) + σ̃15(I + σ̃h) + σ̃26(I + σ̃h) + σ̃37(I + σ̃h) + σ̃48(I + σ̃h)

+σ̃15σ̃26(I + σ̃h) + σ̃15σ̃37(I + σ̃h) + σ̃15σ̃48(I + σ̃h), (99)

where Eq. 88 for this case is obtained to be σ̃[ω̃] = σ̃[ω]σ̃h so that Eq. 99 corresponds to
Eq. 89. Note that the three multiple epimerizations (̃σ[ω]) in the last row of Eq. 99, i.e.,
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σ̃15σ̃26, σ̃15σ̃37, and σ̃15σ̃48, contain a common epimerization σ̃15 as a pivot epimer-
ization. Their complementary multiple enumerations (̃σ[ω̃]) which are not involved in
Eq. 99 (i.e., σ̃37σ̃48, σ̃26σ̃48, and σ̃26σ̃37) do not contain the pivot epimerization σ̃15.

The direct product of H̃ (Eq. 99) and Hσh according to Eq. 94 is calculated to give:

H̃ × Hσh = Hs+σ̃15 × Hs+σ̃26 × Hs+σ̃37 × Hs+σ̃48 × Hs

+σ̃15σ̃26 × Hs+σ̃15σ̃37 × Hs+σ̃15σ̃48 × Hs, (100)

where we use Hs = (I + σ̃ )(I + σh) (cf. Eq. 37). Then, Eq. 96 is applied to this case
so as to generate the corresponding stereoisomeric group:

̂̃D4h = H̃ × D4h = H̃ × Hσh × D4

= D4hσ̃ Î + σ̃15 × D4hσ̃ Î + σ̃26 × D4hσ̃ Î + σ̃37 × D4hσ̃ Î + σ̃48 × D4hσ̃ Î

+σ̃15σ̃26 × D4hσ̃ Î + σ̃15σ̃37 × D4hσ̃ Î + σ̃15σ̃48 × D4hσ̃ Î ,

= ×
D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃15
×
D4hσ̃ Î︸ ︷︷ ︸

2,2,9,9

+ σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

10,10,11,11

+ σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

12,12,13,13

+ σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

14,14,15,15

+ σ̃15σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

16,16,17,17

+ σ̃15σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

18,18,19,19

+ σ̃15σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

20,20,21,21

, (101)

Equation 101 is regarded as a coset decomposition of the stereoisomeric group ̂̃D4h

by its subgroup
×
D4hσ̃ Î , which is isomorphic to the RS-stereoisomeric group D4hσ̃ Î .

Each coset appearing in Eq. 101 corresponds to a quadruplet of stereoskeletons, whose
skeleton numbers are shown below a brace. The stereoskeletons of the quadruplet are
contained in each of the stereoisograms listed in Fig. 4a–h.

Correlation diagrams for characterizing global symmetries The coset decompo-

sition defined by Eq. 96 generates a coset representation of ̂̃GCσ by
×
GCσ σ̃ Î , i.e.,

̂̃GCσ

(
/

×
GCσ σ̃ Î

)
, by referring to Fujita’s USCI approach [13].

Definition 13 (Stereoisomeric Representations) The coset representation represented

by the symbol ̂̃GCσ

(
/

×
GCσ σ̃ Î

)
governs a main correlation diagram of stereoisograms

so as to control the stereoisomeric behavior of the stereoisograms (the relevant qua-

druplets of RS-stereoisomers which belong to
×
GCσ σ̃ Î ). The coset representation is

called a stereoisomeric representation of the stereoisomeric group ̂̃GCσ .

It should be noted that the set of permutations σ̃[ω] in Eq. 96 is arbitrarily selected under
the condition ω ≤ n

2 (without losing generality), where the set is not a group. This

means that the set of ̂̃GCσ

/ ×
GCσ σ̃ Î is not a group. However, the coset representation
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Fig. 6 Main correlation
diagram for characterizing the
global symmetry of a
cyclobutane stereoskeleton.
Quadruplets of
RS-stereoisomeric
stereoskeletons (e.g., 1, 1, 8, and
8), whose stereoisograms are
shown in Fig. 4, correspond to
respective cosets appearing in
Eq. 101

1

1

I
×

D4hσI

(8)

(8)

2

2
σ15

×

D4hσI

(9)

(9)

14

14

σ48

×

D4hσI

(15)

(15)

20

20
σ15σ48

×

D4hσI

(21)

(21)

10

10 σ26

×

D4hσI

(11)

(11)

12

12

σ37

×

D4hσI

(13)

(13)

16

16
σ15σ26

×

D4hσI

(17)

(17)
18

18
σ15σ37

×

D4hσI

19

19

̂̃GCσ

(
/

×
GCσ σ̃ Î

)
is transitive under the action of the multiple epimerization group H̃

(Eq. 77), which is a subgroup of ̂̃GCσ .
For example, the coset decomposition of the stereoisomeric group ̂̃D4h (Eq. 101)

generates the corresponding coset representation ̂̃D4h

(
/

×
D4hσ̃ Î

)
. Thus, the cosets

×
D4hσ̃ Î , σ̃15

×
D4hσ̃ Î , σ̃26

×
D4hσ̃ Î , σ̃37

×
D4hσ̃ Î , and σ̃48

×
D4hσ̃ Î in Eq. 101 correspond to the

stereoisograms shown in Fig. 4a–e. The remaining cosets σ̃15σ̃26
×
D4hσ̃ Î , σ̃15σ̃37

×
D4hσ̃ Î ,

and σ̃15σ̃48
×
D4hσ̃ Î in Eq. 101 correspond to the stereoisograms shown in Fig. 4f–h.

These cosets are transitive under the action of the multiple epimerization group H̃
(Eq. 99), which is a subgroup of ̂̃D4h .

To visualize the correspondence due to Eq. 101, a correlation diagram for char-
acterizing the global symmetry of a cyclobutane stereoskeleton is depicted in Fig. 6.
Each quadruplet of RS-stereoisomeric stereoskeletons (e.g., 1, 1, 8, and 8) constructs
a stereoisogram shown in Fig. 4. For the sake of simplicity, each stereoisogram in
Fig. 6 is depicted in a simplified form, in which two holantimeric pairs (e.g., 1/8 and
1/8) are placed one by one at respective nodes.

By starting from Eq. 23, the following equation is obtained:

GCσ σ̃ Î = Hσ̃ × H Î × GC = Hσ̃ × GC Î

= I × GC Î + σ̃ × GC Î = ×
GC Î + σ̃

×
GC Î (102)

On the other hand, Eq. 23 is alternatively converted into an another expression:

GCσ σ̃ Î = Hσ × H Î × GC = Hσ × GC Î

= I × GC Î + σ × GC Î = ×
GC Î + σ

×
GC Î (103)
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Because GC Î (e.g., D4 Î ) corresponds to a pair of a molecule and its holantimer (e.g.,
1 and 8), Eqs. 102 and 103 means that such a pair is regarded as being RS-diaste-
reomeric as well as enantiomeric to the complementary pair (e.g., 1 and 8). Note that
Fig. 6 shows enantiomeric relationships only, which are tentatively regarded as having
precedence over the superposed RS-diastereomeric relationships.

3.4.2 Local symmetries of stereoskeletons

Local symmetry groups in a stereoisomeric group Let us examine how a local sym-
metry group Gσ̃i

Cσ σ̃ Î
(Eq. 39 or 42) is contained in the stereomeric group ̂̃GCσ (Eq. 80

or Eq. 96).
When we put σ̃[0,0,...,0] = I , the term σ̃[0,0,...,0] × GCσ σ̃ Î appearing in Eq. 96 cor-

responds to the RS-stereoisomeric group represented by Eq. 22 or the term contained
in Eq. 42. When we put

[ω′] = [0, 0, . . . , 0,
j
1, 0 . . . , 0], (104)

the term σ̃[ω′] is identical with σ̃ j (cf. Eq. 81), so that the term σ̃[ω′]×GCσ σ̃ Î appearing
in Eq. 96 is identical with σ̃ j × GCσ σ̃ Î appearing in Eq. 41. The two terms are added

to give the group G
σ̃ j

Cσ σ̃ Î
(Eq. 41) as follows:

σ̃[0,0,...,0] × GCσ σ̃ Î + σ̃[ω′] × GCσ σ̃ Î = I × GCσ σ̃ Î + σ̃ j × GCσ σ̃ Î = G
σ̃ j

Cσ σ̃ Î
,

(105)

when n ≥ 2. Hence, the group G
σ̃ j

Cσ σ̃ Î
( j = 1, 2, . . . , n; Eq. 41) is contained in the

stereoisomeric group ̂̃GCσ (= H̃ × GCσ ; Eq. 96). When n = 2, G
σ̃ j

Cσ σ̃ Î
is identical

with ̂̃GCσ . When n = 1, GCσ σ̃ Î is identical with ̂̃GCσ .

Let next consider a coset decomposition of the stereoisomeric group ̂̃GCσ by its

subgroup G
σ̃ j

Cσ σ̃ Î
(a local symmetry group), where j is tentatively fixed. By starting

from Eq. 80, we obtain the following equation:

̂̃GCσ = H̃ × Hσ × GC =

⎡
⎢⎢⎣

n∏
i = 1
i 	= j

(I + σ̃i )

⎤
⎥⎥⎦× (I + σ̃ j ) × GCσ

=

⎡
⎢⎢⎣

n∏
i = 1
i 	= j

(I + σ̃i )

⎤
⎥⎥⎦× (I + σ̃ j ) × Hσ × GC , (106)

where the product in the pair of brackets is concerned with epimerizations except σ̃ j .
By putting ω j = 0 in Eq. 82, the following array of bits is obtained.
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[ω( j)] = [ω1, ω2, . . . , ω j−1,
j
0, ω j+1, . . . , ωn], (107)

where ω j is always equal to zero. Let the symbol ω( j) be the sum of the bits contained
in the bit array [ω( j)]:

ω( j) = ω1 + ω2 + · · · + ωn, (108)

which is an integer from 0 to n −1. A parallel procedure to the one for deriving Eq. 96
from Eq. 80 is effective to this case, so that Eq. 106 is similarly converted so as to give
the following result:

̂̃GCσ =
∑

ω( j)≤ n−1
2

σ̃[ω( j)] × (I + σ̃ j ) × Hσ × H Î × GC

=
∑

ω( j)≤ n−1
2

σ̃[ω( j)] × Hσ̃ j × GCσ σ̃ Î =
∑

ω( j)≤ n−1
2

σ̃[ω( j)] × G
σ̃ j

Cσ σ̃ Î

=
∑

ω( j)≤ n−1
2

σ̃[ω( j)]
×
G

σ̃ j

Cσ σ̃ Î
(109)

for j = 1, 2, . . . , n, where the summation is effective for n ≥ 2. Note that
×
G

σ̃ j

Cσ σ̃ Î
is

identical with ̂̃GCσ itself in the case of n = 2. The following discussions are effective
even for such an extreme case (n = 2).

Obviously, Eq. 109 is a coset decomposition of ̂̃GCσ by the subgroup
×
G

σ̃ j

Cσ σ̃ Î
,

which is a direct-product equivalent to G
σ̃ j

Cσ σ̃ Î
. Because of |̂̃GCσ | = 2n|GCσ | and

| ×
G

σ̃ j

Cσ σ̃ Î
| = 22|GCσ |, we obtain:

∣∣∣̂̃GCσ

∣∣∣/
∣∣∣∣

×
G

σ̃ j

Cσ σ̃ Î

∣∣∣∣ = 2n−2, (110)

which represents the number of cosets contained in Eq. 109.

Subductions of a stereoisomeric group for characterizing local symmetries The rela-

tionship between the coset decomposition by
×
G

σ̃ j

Cσ σ̃ Î
(Eq. 109) and the counterpart

by
×
GCσ σ̃ Î (Eq. 96) can be investigated by following Fujita’s USCI approach [13],

where the concept of subductions of coset representations is a key to examine such a
relationship.

The latter coset decomposition (Eq. 96) generates a coset representation denoted

by the symbol ̂̃GCσ

(
/

×
GCσ σ̃ Î

)
, where the representative of each coset is an ele-

ment involved in the summation
∑

ω≤n/2 σ̃[ω]. Then subduction of ̂̃GCσ

(
/

×
GCσ σ̃ Î

)
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by G
σ̃ j

Cσ σ̃ Î
(or simply by Hσ j ) generates orbits, each of which provides a grouping

of cosets contained in Eq. 96 in accord with the grouping shown by Eq. 109. This
discussion is summarized to give the following equation:

̂̃GCσ

(
/

×
GCσ σ̃ Î

)
↓ G

σ̃ j

Cσ σ̃ Î
= 2n−2G

σ̃ j

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
, (111)

or its simplified alternative:

̂̃GCσ

(
/

×
GCσ σ̃ Î

)
↓ Hσ̃ j = 2n−2Hσ̃ j (/{I }), (112)

where the common coefficient 2n−2 is obtained because the degree of the coset rep-

resentation ̂̃GCσ

(
/

×
GCσ σ̃ Î

)
is calculated to be |̂̃GCσ |/| ×

GCσ σ̃ Î | = 2n−1 (cf. Eq. 97),

while the degree of the coset representation
×
G

σ̃ j

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
(or Hσ̃ j (/{I })) is cal-

culated to be 2. Note that the coefficient 2n−2 in Eqs. 111 and 112 is in agreement
with Eq. 110.

Note that the coset representation G
σ̃ j

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
appearing in the right-hand

side of Eq. 111 is closely related to, or essentially equivalent to the factor group

G
σ̃ j

Cσ σ̃ Î
/

×
GCσ σ̃ Î shown in Eq. 44 (where the subscript i is changed to j without losing

generality), because
×
G

σ̃ j

Cσ σ̃ Î
can be equalized to G

σ̃ j

Cσ σ̃ Î
. Hence, the discussions on

the factor group (before or after Eq. 44) are also effective to the coset representation
appearing in the right-hand side of Eq. 111. Thus, the use of Eq. 112 in place of Eq. 111
is rationalized by the discussion on the derivation of Eq. 46.

By referring to Eq. 109, the 2n−2 cosets which correspond to the coset representa-

tions appearing in Eq. 111 are governed by the coset representation ̂̃GCσ

(
/

×
G

σ̃ j

Cσ σ̃ Î

)
.

The abovementioned discussions are summarized to give a theorem:

Theorem 1 The 2n−2 sets of stereoisograms, where each set belongs to the local

symmetry group G
σ̃ j

Cσ σ̃ Î
(Definition 6), construct an orbit governed by the coset rep-

resentation ̂̃GCσ

(
/

×
G

σ̃ j

Cσ σ̃ Î

)
, which is generated by Eq. 109. Each of the 2n−2 sets of

stereoisograms is governed by the coset representation G
σ̃ j

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
(Eq. 111,

cf. Eq. 44).

For example, the cosets appearing in Eq. 101 are converted into others by multipli-
cation of σ̃15, σ̃26, σ̃37, or σ̃48 as follows:
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↓ Hσ̃i

×
D4hσ̃ Î σ̃15

×
D4hσ̃ Î σ̃26

×
D4hσ̃ Î σ̃37

×
D4hσ̃ Î σ̃48

×
D4hσ̃ Î σ̃15σ̃26

×
D4hσ̃ Î σ̃15σ̃37

×
D4hσ̃ Î σ̃15σ̃48

×
D4hσ̃ Î

1 2 3 4 5 6 7 8
×I 1 2 3 4 5 6 7 8
×σ̃15 2 1 6 7 8 3 4 5
×σ̃26 3 6 1 8 7 2 5 4
×σ̃37 4 7 8 1 6 5 2 3
×σ̃48 5 8 7 6 1 4 3 2

(113)

where the cosets are numbered sequentially.
According to Eq. 112, the results shown in the (×I )- and the (×σ̃15)-rows of

Eq. 113 indicate the subduction of the coset representation ̂̃D4h

(
/

×
D4hσ̃ Î

)
by Hσ̃15

(= {I, σ̃15}). Thereby, four modes of grouping appear to give the corresponding orbits,
i.e., {1, 2}, {3, 6}, {4, 7}, and {5, 8}, where the numbering of the cosets is shown in
Eq. 113. Note that the number of orbits is calculated to be 24−2 = 4 according to
Eq. 112. By referring to Eqs. 109 and 96, the cosets appearing in Eq. 101 are rear-
ranged to generate the four orbits:

̂̃D4h = ×
Dσ̃15

4hσ̃ Î
+ σ̃26

×
Dσ̃15

4hσ̃ Î
+ σ̃37

×
Dσ̃15

4hσ̃ Î
+ σ̃48

×
Dσ̃15

4hσ̃ Î
(114)

=

⎧⎪⎪⎨
⎪⎪⎩

×
D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃15
×
D4hσ̃ Î︸ ︷︷ ︸

2,2,9,9

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

10,10,11,11

+ σ̃15σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

16,16,17,17

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

12,12,13,13

+ σ̃15σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

18,18,19,19

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

14,14,15,15

+ σ̃15σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

20,20,21,21

,

⎫⎪⎪⎬
⎪⎪⎭

(115)

where a pair parenthesized by braces represents each one of the four orbits (cf. Fig. 4)
and corresponds to a set of an epimeric stereoisogram and a holantimeric one. For

example, the set of
×
D4hσ̃ Î (for 1, 1, 8, 8) and σ̃15

×
D4hσ̃ Î (for 2, 2, 9, 9) represents the

set of two stereoisograms shown in Fig. 4a and b. The conversion of Eq. 65 into Eq. 66
shows the rearrangement of inner cosets, which causes the conversion of the stereois-
ograms of Fig. 4a and b into those of Fig. 5a and b (an epimeric stereoisogram and a
holantimeric stereoisogram). Each of the resulting stereoisograms contains a quadru-
plet of numbered stereoskeletons, i.e., {11, 11, 21, 21} or {81, 81, 91, 91}, where the
subscript 1 denotes the local symmetry at the C1 atom. This type of rearrangements
will be discussed more strictly from a different point of view.

The subduction ̂̃D4h

(
/

×
D4hσ̃ Î

)
↓ Hσ̃26 (where Hσ̃26 = {I, σ̃26}) generates another

set of four orbits, {1, 3}, {2, 6}, {4, 8}, and {5, 7}, where the numbering of the cosets
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is shown in Eq. 113. The cosets appearing in Eq. 101 are rearranged to generate the
four orbits:

̂̃D4h = ×
Dσ̃26

4hσ̃ Î
+ σ̃15

×
Dσ̃26

4hσ̃ Î
+ σ̃37

×
Dσ̃26

4hσ̃ Î
+ σ̃48

×
Dσ̃26

4hσ̃ Î
(116)

=

⎧⎪⎪⎨
⎪⎪⎩

×
D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

10,10,11,11

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃15
×
D4hσ̃ Î︸ ︷︷ ︸

2,2,9,9

+ σ̃15σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

16,16,17,17

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

12,12,13,13

+ σ̃15σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

20,20,21,21

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

14,14,15,15

+ σ̃15σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

18,18,19,19

⎫⎪⎪⎬
⎪⎪⎭

(117)

where each pair parenthesized by braces represents one of the four orbits (cf. Fig. 4)
and corresponds to a set of an epimeric stereoisogram and a holantimeric one (via
Eqs. 69 and 70).

The subduction by Hσ̃37 (= {I, σ̃37}) causes a rearrangement to generate a further
set of four orbits, {1, 4}, {2, 7}, {3, 8}, and {5, 6}, where the numbering of the cosets
is shown in Eq. 113. The cosets appearing in Eq. 101 are rearranged to generate the
four orbits:

̂̃D4h = ×
Dσ̃37

4hσ̃ Î
+ σ̃15

×
Dσ̃37

4hσ̃ Î
+ σ̃26

×
Dσ̃37

4hσ̃ Î
+ σ̃48

×
Dσ̃37

4hσ̃ Î
(118)

=

⎧⎪⎪⎨
⎪⎪⎩

×
D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

12,12,13,13

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃15
×
D4hσ̃ Î︸ ︷︷ ︸

2,2,9,9

+ σ̃15σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

18,18,19,19

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

10,10,11,11

+ σ̃15σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

20,20,21,21

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

14,14,15,15

+ σ̃15σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

16,16,17,17

⎫⎪⎪⎬
⎪⎪⎭

(119)

where each pair parenthesized by braces represents one of the four orbits (cf. Fig. 4)
and corresponds to a set of an epimeric stereoisogram and a holantimeric one (via
Eqs. 72 and 73).

The subduction of the coset representation ̂̃D4h

(
/

×
D4hσ̃ Î

)
by Hσ̃48 (= {I, σ̃48})

causes a rearrangement to generate a further set of four orbits, {1, 5}, {2, 8}, {3, 7},
and {4, 6}, where the numbering of the cosets is shown in Eq. 113. The cosets appearing
in Eq. 101 are rearranged to generate the four orbits:
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̂̃D4h = ×
Dσ̃48

4hσ̃ Î
+ σ̃15

×
Dσ̃48

4hσ̃ Î
+ σ̃26

×
Dσ̃48

4hσ̃ Î
+ σ̃37

×
Dσ̃48

4hσ̃ Î
(120)

=

⎧⎪⎪⎨
⎪⎪⎩

×
D4hσ̃ Î︸ ︷︷ ︸
1,1,8,8

+ σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

14,14,15,15

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃15
×
D4hσ̃ Î︸ ︷︷ ︸

2,2,9,9

+ σ̃15σ̃48
×
D4hσ̃ Î︸ ︷︷ ︸

20,20,21,21

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

10,10,11,11

+ σ̃15σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

18,18,19,19

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃37
×
D4hσ̃ Î︸ ︷︷ ︸

12,12,13,13

+ σ̃15σ̃26
×
D4hσ̃ Î︸ ︷︷ ︸

16,16,17,17

⎫⎪⎪⎬
⎪⎪⎭

(121)

where each pair parenthesized by braces represents one of the four orbits (cf. Fig. 4)
and corresponds to a set of an epimeric stereoisogram and a holantimeric one (via
Eqs. 75 and 76).

It should be added here that Theorem 1 is a foundation of traditional categoriza-
tions of stereoisomers, e.g., the Fischer-Rosanoff convention for naming the dl-series
of sugars by starting from d- and l-glyceraldehydes [5]. The selection of the local

symmetry group G
σ̃ j

Cσ σ̃ Î
(Definition 6) in Theorem 1 corresponds to the selection of

d- or l-glyceraldehyde as an initial standard configuration, where the corresponding
pivot epimerization (Definition 12) is concerned with the RS-diastereomeric relation-
ship between d- and l-glyceraldehydes (not to the enantiomeric relationship between
them). Note that any RS-stereogenic center can be selected as the center of such a
pivot epimerization (̃σ j ). As for cyclobutane stereoisomers, any one of C1–C4 can be
selected as such a pivot epimerization so as to result in Eq. 115, 117, 119, or 121.

Correlation diagrams for characterizing local symmetries As clarified by Theorem 1

(Eq. 111 or Eq. 112), the group
×
G

σ̃ j

Cσ σ̃ Î
appearing in Eq. 109 corresponds to a pair

of stereoisograms (an epimeric stereoisogram and a holantimeric stereoisogram, e.g.,

Fig. 5a and b). Thereby the coset decomposition represented by Eq. 109 determines
the behavior of 2n−2 pairs of such stereoisograms, where each coset of Eq. 109 is
correlated to a pair of stereoisograms. Each pair of stereoisograms represents the local
symmetries at the C j atoms of relevant stereoskeletons ( j = 1, 2, . . . , n). The behav-
ior of the 2n−2 pairs of stereoisograms at a fixed C j atom is visualized by correlation
diagrams of stereoisograms. For example, the coset decompositions represented by
Eq. 114 (or Eq. 115) for C1, Eq. 116 (or Eq. 117) for C2, Eq. 116 (or Eq. 119) for C3, and
Eq. 114 (or Eq. 121) for C4 are visualized by correlation diagrams of stereoisograms,
as shown in Fig. 7.

We are able to discuss the local symmetries at the C1 atoms of cyclobutane stereo-
skeletons on the basis of Eq. 114 (or Eq. 115). By starting from the correlation diagram
for characterizing the global symmetry of a cyclobutane stereoskeleton (Fig. 6), enan-
tiomeric, RS-diastereomeric, and holantimeric relationships are drawn in agreement
with Eq. 114 (as well as with Eq. 115) so as to generate the corresponding correlation

diagram, as shown in Fig. 7a. Thus, the coset
×
Dσ̃15

4hσ̃ Î
contained in Eq. 114 corresponds

to Stereoisogram #1 of Fig. 7a. Stereoisogram #1 of Fig. 7a is concerned with a
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Fig. 7 Correlation diagrams of stereoisograms for cyclobutane stereoskeletons: a for C1 (cf. Eq. 115), b
for C2 (cf. Eq. 117), c for C3 (cf. Eq. 119), and d for C4 (cf. Eq. 121)

quadruplet of stereoskeletons, i.e., 11 and 11 (corresponding to the coset
×
D4hσ̃ Î in

Eq. 115) as well as 21 and 21 (corresponding to the coset σ̃15
×
D4hσ̃ Î in Eq. 115). Note

that the subscript 1 of each stereoskeleton number emphasizes the consideration of
the local symmetry at the C1 atom. The concrete form of Stereoisogram #1 is shown
as an epimeric stereoisogram in Fig. 5a. Stereoisogram #1 of Fig. 7a is also concerned
with another quadruplet of stereoskeletons, i.e., 81 and 81 (corresponding to the coset
×
D4hσ̃ Î as well as 91 and 91 (corresponding to the coset σ̃15

×
D4hσ̃ Î in Eq. 115). The con-

crete form of Stereoisogram #1 of this case is shown as a holantimeric stereoisogram
in Fig. 5b.

Similarly, the coset σ̃26
×
Dσ̃15

4hσ̃ Î
contained in Eq. 114 corresponds to Stereoisogram #2

of Fig. 7a, where relevant stereoskeletons are collected in Eq. 115; the coset σ̃37
×
Dσ̃15

4hσ̃ Î
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contained in Eq. 114 corresponds to Stereoisogram #3 of Fig. 7a, where relevant

stereoskeletons are collected in Eq. 115; and the coset σ̃48
×
Dσ̃15

4hσ̃ Î
contained in Eq. 114

corresponds to Stereoisogram #4 of Fig. 7a, where relevant stereoskeletons are col-
lected in Eq. 115. The corresponding concrete forms of epimeric and holantimeric
stereoisograms can be depicted in a parallel way to Fig. 5a and b.

The local symmetries at the C2 atoms of cyclobutane stereoskeletons are examined
by means of Eq. 116 (or Eq. 117). Thus, the behavior of the cosets contained in Eq. 116
are correlated to Stereoisogram #1–#4, which are contained in the correlation diagram

of stereoisograms shown in Fig. 7b. The coset
×
Dσ̃26

4hσ̃ Î
contained in Eq. 116 corresponds

to Stereoisogram #1 of Fig. 7b. The remaining cosets contained in Eq. 116 correspond
respectively to Stereoisogram #2–#4 of Fig. 7b.

When we focus our attention on the C3 atoms of cyclobutane stereoskeletons, we
use Eq. 118 (or Eq. 119) to discuss the local symmetries at the C3 atoms. The behavior
of the cosets contained in Eq. 118 are correlated to Stereoisogram #1–#4, which are
contained in the correlation diagram of stereoisograms shown in Fig. 7c. The coset
×
Dσ̃37

4hσ̃ Î
contained in Eq. 118 corresponds to Stereoisogram #1 of Fig. 7c. The remain-

ing cosets contained in Eq. 118 correspond respectively to Stereoisogram #2–#4 of
Fig. 7c.

The correlation diagram of stereoisograms for determining the local symmetries
at the C4 atoms of cyclobutane stereoskeletons is illustrated in Fig. 7d, where each
stereoisogram is correlated to a coset appearing in Eq. 120 (or Eq. 121). Thus, the coset
×
Dσ̃48

4hσ̃ Î
contained in Eq. 120 corresponds to Stereoisogram #1 of Fig. 7d. The remain-

ing cosets contained in Eq. 120 correspond respectively to Stereoisogram #2–#4 of
Fig. 7d.

By means Eq. 111, a quadruplet of RS-stereoisomers (e.g., 11, 11 81, and 81) and
another quadruplet (e.g., 21, 21 91, and 91) construct a two-membered orbit governed

by the coset representation
×
G

σ̃ j

Cσ σ̃ Î

(
/

×
GCσ σ̃ Î

)
, where each quadruplet belongs to

×
GCσ σ̃ Î . On the other hand, Eq. 112 indicates that the two quadruplets are regarded as
abstract entities belonging to {I } so as to construct a two-membered orbit governed
by the coset representation Hσ̃ j (/{I }).

Strictly speaking, there appears one more subduction between Eqs. 111 and 112,
i.e.,

̂̃GCσ

(
/

×
GCσ σ̃ Î

)
↓ H

σ̃ j
σ = 2n−2H

σ̃ j
σ (/Hσ ), (122)

where H
σ̃ j
σ is an epimeric stereoisogram group defined by Eq. 48 and Hσ is given by

Eq. 20. By following Eq. 122, the two quadruplets belonging to
×
GCσ σ̃ Î . are reduced

into two enantiomeric pairs belonging to Hσ (e.g., one pair: 11 (81)/ 11(81) and the
other pair: 21 (91)/ 21 (91).

Because we obtain the following subduction:
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H
σ̃ j
σ (/Hσ ) ↓ Hσ̃ j = Hσ̃ j (/{I }), (123)

Equation 122 gives apparently an equivalent result to Eq. 112. The two modes of
results can be equalized so long as we take account of the RS-stereoisomeric group
×
GCσ σ̃ Î , which is contained in the coset representation ̂̃GCσ

(
/

×
GCσ σ̃ Î

)
.

Definition 8 combined with Eq. 60 indicates that the epimeric RS-stereoisomeric

group G
σ̃ j
Cσ (= H

σ̃ j
σ ×GC ) corresponds to an epimeric stereoisogram. Thereby, Eq. 122

is converted into the following subduction:

̂̃GCσ

(
/

×
GCσ σ̃ Î

)
↓ G

σ̃ j
Cσ = ̂̃GCσ

(
/

×
GCσ σ̃ Î

)
↓ H

σ̃ j
σ × GC

= 2n−2H
σ̃ j
σ × GC (/Hσ × GC ) = 2n−2G

σ̃ j
Cσ (/GCσ ).

(124)

The coset representation G
σ̃ j
Cσ (/GCσ ) means that an epimeric stereoisogram controlled

by G
σ̃ j
Cσ (/GCσ ) is regarded as being composed of two enantiomeric pairs belonging

to GCσ , where the two enantiomeric pairs are converted into each other by σ̃ j .

4 Stereoisomers derived from a stereoskeleton

4.1 Pairwise appearance of epimeric and holantimeric stereoisograms

The combination of Eq. 57 with Eq. 59 gives the following equation:

Gσ̃i

Cσ σ̃ Î
= I × Gσ̃i

Cσ + Î × Gσ̃i
Cσ = ×

Gσ̃i
Cσ + Î

×
Gσ̃i

Cσ , (125)

which is regarded as a coset decomposition of the local symmetry group Gσ̃i

Cσ σ̃ Î
by

the epimeric RS-stereoisomeric group Gσ̃i
Cσ . The coset decomposition (Eq. 125) gen-

erates the corresponding coset representation Gσ̃i

Cσ σ̃ Î

(
/

×
Gσ̃i

Cσ

)
of degree 2, which is

calculated as follows: |Gσ̃i

Cσ σ̃ Î
|/| ×

Gσ̃i
Cσ | = 2 × 22|GC |/22|GC | = 2. The group

×
Gσ̃i

Cσ

of the coset representation Gσ̃i

Cσ σ̃ Î

(
/

×
Gσ̃i

Cσ

)
(Eq. 125) indicates the group governing

an epimeric stereoisogram (or a holantimeric stereoisogram) as shown in Eq. 60 and

Definition 9. Hence, the coset representation Gσ̃i

Cσ σ̃ Î

(
/

×
Gσ̃i

Cσ

)
(Eq. 125) generates a

two-membered orbit, whose members are correlated to an epimeric stereoisogram and
a holantimeric stereoisogram (Definition 9).
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By introducing Eq. 125 (the subscript i is changed to a fixed j) into Eq. 109, we
obtain the following equation:

̂̃GCσ =
∑

ω( j)≤ n−1
2

σ̃[ω( j)]
×
G

σ̃ j

Cσ σ̃ Î

=
∑

ω( j)≤ n−1
2

σ̃[ω( j)]
×
G

σ̃ j
Cσ +

∑
ω( j)≤ n−1

2

σ̃[ω( j)] Î
×
G

σ̃ j
Cσ =

∑
ω( j)≤ n−1

2

σ̃[ω( j)](I + Î )
×
G

σ̃ j
Cσ ,

(126)

which is regarded as a coset decomposition of the stereoisomeric group ̂̃GCσ by

the epimeric RS-stereoisomeric group G
σ̃ j
Cσ . Note that the expansion of

∑
ω( j)≤ n−1

2

σ̃[ω( j)](I + Î ) generates 2n−1 terms. The coset decomposition (Eq. 126) generates the

corresponding coset representation ̂̃GCσ

(
/

×
G

σ̃ j
Cσ

)
, the degree of which is calculated

to be |̂̃GCσ |/| ×
Gσ̃i

Cσ | = 2n|GC |/22|GC | = 2n−2.
By keeping Eqs. 125 and 126 in mind, we obtain the following subduction for a

fixed j :

̂̃GCσ

(
/

×
G

σ̃ j
Cσ

)
↓ G

σ̃ j

Cσ σ̃ Î
= 2n−2G

σ̃ j

Cσ σ̃ Î

(
/

×
G

σ̃ j
Cσ

)
. (127)

On a similar line to the derivation of Eq. 125, the omission of GC is allowed to give a
coset decomposition:

Hσ̃i

σ Î
= I × Hσ̃i

σ + Î × Hσ̃i
σ ,= ×

Hσ̃i
σ + Î

×
Hσ̃i

σ , (128)

which generates a coset representation of degree 2, i.e., Hσ̃i

σ Î

(
/

×
Hσ̃i

σ

)
. Thereby, a

parallel derivation to Eq. 127 is allowed so as to generate the following equations:

̂̃GCσ

(
/

×
G

σ̃ j
Cσ

)
↓ H

σ̃ j

σ Î
= 2n−2H

σ̃ j

σ Î

(
/

×
H

σ̃ j
σ

)
(129)

̂̃GCσ

(
/

×
G

σ̃ j
Cσ

)
↓ H Ĩ = 2n−2H Ĩ (/{I }). (130)

For example, the data of Eqs. 114 and 115 are alternatively analyzed in accord with
Eq. 127, which is calculated for characterizing this case as follows:

̂̃D4h

(
/

×
Dσ̃15

4σ

)
↓ Dσ̃15

4hσ̃ Î
= 4Dσ̃15

4hσ̃ Î

(
/

×
Dσ̃15

4σ

)
, (131)
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where we put Dσ̃15

4hσ̃ Î
= ×

Dσ̃15
4σ + Î

×
Dσ̃15

4σ in accord with Eq. 125. In addition, Eqs. 129
and 130 are applied to this case to give the following subductions:

̂̃D4h

(
/

×
Dσ̃15

4σ

)
↓ Hσ̃15

σ Î
= 4Hσ̃15

σ Î

(
/

×
Hσ̃15

σ

)
(132)

̂̃D4h

(
/

×
Dσ̃15

4σ

)
↓ H Î = 4H Î (/{I }), (133)

where we put Hσ̃15

σ Î
= ×

Hσ̃15
σ + Î

×
Hσ̃15

σ in accord with Eq. 128. For the sake of sim-
plicity, Eq. 132 is applied to the eight cosets governed by the coset representation
̂̃D4h

(
/

×
Dσ̃15

4σ

)
so that the cosets are converted into one another by the multiplication

of each operation of Eq. 132 as follows:

↓ ×
Hσ̃15

σ Î

×
Dσ̃15

4σ Î
×
Dσ̃15

4σ σ̃26
×
Dσ̃15

4σ σ̃26 Î
×
Dσ̃15

4σ σ̃37
×
Dσ̃15

4σ σ̃37 Î
×
Dσ̃15

4σ σ̃48
×
Dσ̃15

4σ σ̃48 Î
×
Dσ̃15

4σ

1 2 3 4 5 6 7 8
×I 1 2 3 4 5 6 7 8
×σ̃15 1 2 3 4 5 6 7 8
×σ 1 2 3 4 5 6 7 8
×σ̃15σ 1 2 3 4 5 6 7 8
× Î 2 1 4 3 6 5 8 7
× Î σ̃15 2 1 4 3 6 5 8 7
× Îσ 2 1 4 3 6 5 8 7
× Î σ̃15σ 2 1 4 3 6 5 8 7

(134)

As a result, the eight cosets numbered sequentially are divided according to
Eq. 132 so as to generate four (= 24−2) orbits governed by the coset representa-

tion Hσ̃15

σ Î

(
/

×
Hσ̃15

σ

)
, i.e., {1, 2}, {3, 4}, {5, 6}, and {7, 8}. This division is interpreted

to be equal to Eq. 131. Thereby, the data of Eqs. 114 and 115 are rearranged to generate

four orbits governed by the coset representation Dσ̃15

4hσ̃ Î

(
/

×
Dσ̃15

4σ

)
.

̂̃D4h = ×
Dσ̃15

4hσ̃ Î
+ σ̃26

×
Dσ̃15

4hσ̃ Î
+ σ̃37

×
Dσ̃15

4hσ̃ Î
+ σ̃48

×
Dσ̃15

4hσ̃ Î
(135)

=

⎧⎪⎪⎨
⎪⎪⎩

×
Dσ̃15

4σ︸︷︷︸
1,1,2,2

+ Î
×
Dσ̃15

4σ︸ ︷︷ ︸
8,8,9,9

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃26
×
Dσ̃15

4σ︸ ︷︷ ︸
10,10,16,16

+ σ̃26 Î
×
Dσ̃15

4σ︸ ︷︷ ︸
11,11,17,17

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃37
×
Dσ̃15

4σ︸ ︷︷ ︸
12,12,18,18

+ σ̃37 Î
×
Dσ̃15

4σ︸ ︷︷ ︸
13,13,19,19

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃48
×
Dσ̃15

4σ︸ ︷︷ ︸
14,14,20,20

+ σ̃48 Î
×
Dσ̃15

4σ︸ ︷︷ ︸
15,15,21,21

⎫⎪⎪⎬
⎪⎪⎭

. (136)
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Note that Eq. 135 is identical with Eq. 114. The coset representation Dσ̃15

4hσ̃ Î

(
/

×
Dσ̃15

4σ

)

indicates the relationships between the cosets of Eq. 135 and those of Eq. 136. Thus,

the coset
×
Dσ̃15

4hσ̃ Î
(Eq. 135) is divided into

×
Dσ̃15

4σ and Î
×
Dσ̃15

4σ (Eq. 136) and so on. In
other words, an epimeric stereoisogram is paired with an holantimeric stereoisogram

in accord with
×
Dσ̃15

4σ and Î
×
Dσ̃15

4σ .
The result shown in Eq. 136 provides us with an alternative interpretation of the

correlation diagram of stereoisograms shown in Fig. 7a. Thus, each pair parenthesized

by braces represents an orbit governed by the coset representation Dσ̃15

4hσ̃ Î

(
/

×
Dσ̃15

4σ

)
,

which shows a set of two types of stereoisograms, i.e., an epimeric stereoisogram (e.g.,

the coset
×
Dσ̃15

4σ for a quadruplet of 11, 11 21, and 21) and a holantimeric one (e.g., the

coset Î
×
Dσ̃15

4σ for a quadruplet 81, 81 91, 91). Although the two types of stereoisograms
should be depicted separately as exemplified in Fig. 5a and b, they are illustrated
by a single stereoisogram in Fig. 7a (e.g. Stereoisogram #1) for the sake of saving
space.

The data of Eqs. 116 and 117 are rearranged in accord with Eq. 127 so as to gen-
erate four orbits (= 24−2), each of which is governed by the coset representation

Dσ̃26

4hσ̃ Î

(
/

×
Dσ̃26

4σ

)
of degree 2.

̂̃D4h = ×
Dσ̃26

4hσ̃ Î
+ σ̃15

×
Dσ̃26

4hσ̃ Î
+ σ̃37

×
Dσ̃26

4hσ̃ Î
+ σ̃48

×
Dσ̃26

4hσ̃ Î
(137)

=

⎧⎪⎪⎨
⎪⎪⎩

×
Dσ̃26

4σ︸︷︷︸
1,1,10,10

+ Î
×
Dσ̃26

4σ︸ ︷︷ ︸
8,8,11,11

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃15
×
Dσ̃26

4σ︸ ︷︷ ︸
2,2,16,16

+ σ̃26 Î
×
Dσ̃26

4σ︸ ︷︷ ︸
9,9,17,17

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃37
×
Dσ̃26

4σ︸ ︷︷ ︸
12,12,20,20

+ σ̃37 Î
×
Dσ̃26

4σ︸ ︷︷ ︸
13,13,21,21

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

σ̃48
×
Dσ̃26

4σ︸ ︷︷ ︸
14,14,18,18

+ σ̃48 Î
×
Dσ̃26

4σ︸ ︷︷ ︸
15,15,19,19

⎫⎪⎪⎬
⎪⎪⎭

(138)

where a pair parenthesized by braces represents each one of the four orbits and cor-
responds to a set of an epimeric stereoisogram and a holantimeric one. These data
provide us with an alternative interpretation of the correlation diagram of stereoiso-
grams shown in Fig. 7b.

On a similar line, the data of Eqs. 119 and 121 are rearranged in accord with Eq. 127
so that the results enable us to obtain alternative interpretations of the correlation dia-
grams shown in Fig. 7c and d.
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4.2 Coincidence of epimeric and holantimeric stereoisograms

4.2.1 Functions for determining stereoisomers with achiral substituents only

Because an epimeric stereoisogram and its holantimeric counterpart appear pairwise,
each pair of such stereoisograms can be treated as a single entity. This type of treatment
is versatile to discuss special cases having achiral substituents only, because each pair
is reduced into a single stereoisogram.

Let us consider a function having the following components:

f (1) = Br, f (2) = Cl, f (3) = F, f (4) = F,

f (5) = H, f (6) = H, f (7) = H, f (8) = H, (139)

which produces chiral stereoisomers of 1-bromo-2-chloro-3,4-difluorocyclobutane.
They are depicted in Fig. 8.

The molecule 22 is generated by applying the function Eq. 139 to the stereoskeleton
1. The molecule 22 belongs to C1, which is a subgroup of the molecular-symmetry
group D4h assigned to the stereoskeleton 1. The corresponding enantiomer 22 also
belongs to C1. The pair of 22 and 22 is regarded as a single entity of Cs , which is
a subgroup of D4h . Moreover, a quadruplet of stereoisomers (e.g., 22, 22, 23 and 23
is regarded as a single entity of Csσ̃ Î (⊂ D4hσ̃ Î ). Similarly, the other stereoisomeric
molecules collected in Fig. 8 are obtained by applying the function Eq. 139 to the ste-
reoskeletons shown in Fig. 4. Each of the stereoisograms collected in Fig. 8 belongs
to the RS-stereoisomeric group Csσ̃ Î and is categorized to Type I [16]. In spite of the
symmetry reduction, the action of the multiple epimerization group H̃ (Eq. 77) and
its derived group (Eq. 94) are also effective to examine the stereoisomerism of such a
C1-promolecule.

As exemplified by this case (Fig. 8), stereoisomers with achiral substituents only
correspond to main stereoisograms of Type I. The Type I nature of each stereoisogram
produces remarkable features of correlation diagrams of epimeric stereoisograms,
which can be discussed in general by pairing a promolecule with its holantimer.

4.2.2 Global symmetries for special cases

When all substituents are achiral in isolation, a molecule is identical with its holantimer
(i.e., a self-holantimer) so that they are identical under the action of GC Î (Eq. 13). To

treat such cases, we adopt the coset representation of degree 2, i.e., GCσ σ̃ Î

(
/

×
GC Î

)
,

which is derived from Eq. 103. Each of the two cosets relevant to the degree 2 corre-
sponds to a pair of skeletons to give a molecule (and its self-holantimer).

The stereoisomeric group defined by Eq. 80 is represented by the following coset
decomposition:

̂̃GCσ = H̃ × GCσ =
[

n∏
i=1

(I + σ̃i )

]
× GCσ =

[
n∏

i=1

(I + σ̃i )

]
× GC Î
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(a)
×

CsσI (b) σ15
×

CsσI (c) σ26
×

CsσI

(=
×

Cs + σ
×

Cs = σ15
×

Cs + σ15σ
×

Cs = σ26
×

Cs + σ26σ
×

Cs)
S

C

1 2
34

5 6
78S R

RS
Br Cl

FF

H H
HH

5 6
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34R S

SR
H H

HH
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FF
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SR
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×

Cs)
S

C

5 6
34

1 2
78R S

RS
H H

FF

Br Cl
HH

1 2
78

5 6
34S R

SR
Br Cl

HH

H H
FF

(= 32)

1 2
78

5 6
34S R

SR
Br Cl

HH

H H
FF

5 6
34

1 2
78R S

RS
H H

FF

Br Cl
HH

32 33 (= 32)

S

C

5 2
74

1 6
38R R

SS
H Cl

HF

Br H
FH

1 6
38

5 2
74S S

RR
Br H

FH

H Cl
HF

(= 34)

1 6
38

5 2
74S S

RR
Br H

FH

H Cl
HF

5 2
74

1 6
38R R

SS
H Cl

HF

Br H
FH

34 35 (= 34)

S

C

5 2
38

1 6
74R R

RR
H Cl

FH

Br H
HF

1 6
74

5 2
38S S

SS
Br H

HF

H Cl
FH

22 23 24 25 26 27

28 29 30 31

32 33 34 35 36 37 (= 36)

1 6
74

5 2
38S S

SS
Br H

HF

H Cl
FH

5 2
38

1 6
74R R

RR
H Cl

FH

Br H
HF

36 37 (= 36)

Fig. 8 Main stereoisograms for specifying stereoisomeric 1-bromo-2-chloro-3,4-difluorocyclobutanes. All
of the stereoisograms belong to Type I

=
[

n∏
i=1

(I + σ̃i )

]
×
GC Î , (140)

123



J Math Chem (2011) 49:95–162 135

where the number of cosets contained in the last side is calculated to be 2n , which is
equal to the order of the multiple epimerization group H̃ (Eq. 78). Note that Eq. 140
is based on two alternative ways for defining the stereoisomeric group ̂̃GCσ , i.e.,

̂̃GCσ = H̃ × GCσ = H̃ × GC Î , (141)

which is correlated to the following relationship:

[
n∏

i=1

(I + σ̃i )

]
σ =

[
n∏

i=1

(I + σ̃i )

]
σ̃ Î =

[
n∏

i=1

(I + σ̃i )

]
Î , (142)

where we use Eq. 16 by keeping Eq. 80 in mind. As a result, Eq. 140 can be regarded

as a coset decomposition of ̂̃GCσ by
×
GC Î so as to generate a coset representation

̂̃GCσ

(
/

×
GC Î

)
, the degree of which is equal to the number of cosets, i.e., 2n . The

degree 2n is calculated by starting from the orders of the relevant groups, i.e., |̂̃GCσ | =
2n| ×

GC Î |.
By following Fujita’s USCI approach [13], let us consider the subduction of the

coset representation ̂̃GCσ

(
/

×
GC Î

)
by the RS-stereoisomeric group GCσ σ̃ Î . Thereby,

we obtain the following equation:

̂̃GCσ

(
/

×
GC Î

)
↓ GCσ σ̃ Î = 2n−1GCσ σ̃ Î

(
/

×
GC Î

)
, (143)

where the coefficient 2n−1 is calculated by using |̂̃GCσ | = 2n| ×
GCσ |, | ×

GC Î | = | ×
GCσ |,

and |GCσ σ̃ Î | =2| ×
GCσ |. Note that the coset representation GCσ σ̃ Î

(
/

×
GC Î

)
is of degree

2.
The stereoisogram group Hs (Eq. 21) and its subgroup H Î (Eq. 18) generate a coset

representation Hs(/H Î ), which can be used in place of
×
GCσ σ̃ Î

(
/

×
GC Î

)
because the

omission of
×
GCσ is allowed without losing generality. Thereby Eq. 143 is simplified

to give:

̂̃GCσ

(
/

×
GC Î

)
↓ Hs = 2n−1Hs(/H Î ), (144)

where the coset representation Hs(/H Î ) is equalized to the corresponding direct-prod-

uct expression Hs(/
×
H Î ).
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The meaning of Eq. 143 is that 2n holantimeric pairs governed by ̂̃GCσ

(
/

×
GC Î

)

are divided into 2n−1 quadruplets of RS-stereoisomers governed by GCσ σ̃ Î

(
/

×
GC Î

)
.

The coset representation GCσ σ̃ Î

(
/

×
GC Î

)
means that each quadruplet is regarded as

being composed of two holantimeric pairs belonging to
×
GC Î . The two holantimeric

pairs are enantiomeric and RS-diastereomeric to each other (cf. Eqs. 102 and 103).

Each holantimeric pair belonging to
×
GC Î represents a single molecule if only achiral

substituents are taken into consideration. It should be emphasized that the 2n−1 qua-

druplets of RS-stereoisomers, each of which is governed by GCσ σ̃ Î

(
/

×
GC Î

)
, appear

as stereoisograms in a main correlation diagrams of stereoisograms. The 2n−1 stere-

oisograms are transitive under the action of ̂̃GCσ

(
/

×
GC Î

)
while each of them is fixed

under the action of the RS-stereoisomeric group GCσ σ̃ Î .
For example, Eq. 101 is interpreted by the procedure described in the preceding

paragraphs. Thus, Eqs. 143 and 144 are applied to this case so as to give the following
subductions:

̂̃D4h(/
×
D4 Î ) ↓ D4hσ̃ Î = 8D4hσ̃ Î (/

×
D4 Î ) (145)

̂̃D4h(/
×
D4 Î ) ↓ Hs = 8Hs(/H Î ). (146)

Thereby, each of the eight cosets contained in Eq. 101 is divided into two cosets

governed by D4hσ̃ Î (/
×
D4 Î ) in accord with Eq. 145.

̂̃D4h = ×
D4hσ̃ Î + σ̃15

×
D4hσ̃ Î + σ̃26

×
D4hσ̃ Î + σ̃37

×
D4hσ̃ Î + σ̃48

×
D4hσ̃ Î

+σ̃15σ̃26
×
D4hσ̃ Î + σ̃15σ̃37

×
D4hσ̃ Î + σ̃15σ̃48

×
D4hσ̃ Î , (147)

=

⎧⎪⎨
⎪⎩

×
D4 Î︸︷︷︸
1,8

+ σ
×
D4 Î︸ ︷︷ ︸
1,8

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩σ̃15

×
D4 Î︸ ︷︷ ︸

2,9

+ σ̃15σ
×
D4 Î︸ ︷︷ ︸

2,9

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃26

×
D4 Î︸ ︷︷ ︸

10,11

+ σ̃26σ
×
D4 Î︸ ︷︷ ︸

10,11

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩σ̃37

×
D4 Î︸ ︷︷ ︸

12,13

+ σ̃37σ
×
D4 Î︸ ︷︷ ︸

12,13

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩σ̃48

×
D4 Î︸ ︷︷ ︸

14,15

+ σ̃48σ
×
D4 Î︸ ︷︷ ︸

14,15

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃15σ̃26

×
D4 Î︸ ︷︷ ︸

16,17

+ σ̃15σ̃26σ
×
D4 Î︸ ︷︷ ︸

16,17

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩σ̃15σ̃37

×
D4 Î︸ ︷︷ ︸

18,19

+ σ̃15σ̃37σ
×
D4 Î︸ ︷︷ ︸

18,19

⎫⎪⎬
⎪⎭
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+

⎧⎪⎨
⎪⎩σ̃15σ̃48

×
D4 Î︸ ︷︷ ︸

20,21

+ σ̃15σ̃48σ
×
D4 Î︸ ︷︷ ︸

20,21

⎫⎪⎬
⎪⎭ , (148)

where Eq. 147 is identical with Eq. 101. Comparison between Eq. 147 (Eq. 101) and
Eq. 148 indicates the meaning of Eq. 145. Thus, eight parenthesized couples of two
cosets contained in Eq. 148 correspond to eight-times appearance of the coset represen-

tations D4hσ̃ Î (/
×
D4 Î ) in the right-hand side of Eq. 145. As found easily, these couples

of two cosets contained in Eq. 148 correspond to the stereoisograms of Fig. 4a–h. Their
transitivity is depicted in the main correlation diagram shown in Fig. 6. Because each

of the eight couples belongs to the group
×
D4 Î contained in the coset representation

̂̃D4h(/
×
D4 Î ), they are transitive under the action of ̂̃D4h(/

×
D4 Î ). After the subduction into

D4hσ̃ Î (Eq. 145), their transitivity is, on the other hand, reduced to permit changeability

only under the action of D4hσ̃ Î (/
×
D4 Î ).

As shown by the groups
×
GC Î (Eq. 143) and H Î (Eq. 144), the Eqs. 143 and 144 are

concerned with holantimeric pairs as well as with self-holantimeric pairs for character-
izing stereoskeletons. For example, Eq. 148 for a cyclobutane stereoskeleton contains

the group
×
D4 Î corresponding to a holantimeric pair of stereoskeletons, 1 and 8.

The derivations of cyclobutane derivatives on the basis of such stereoskeletons as
1 and 8 are categorized to five types by following Fujita’s formulation [16]. Let us
examine the five types by paying attention to holantimeric relationships appearing in
Fig. 4.

1. When the function represented by Eq. 139 is applied to the holantimeric pair 1 and
8, there emerge a self-holantimeric pair of 22 and 23 (=22), which are identical
with each other, as shown in Fig. 8a. As a result, the stereoisogram of Fig. 8a
belongs to Type I. All of the relevant stereoisograms collected in Fig. 8 belongs
also to Type I.

2. When the function represented by Eq. 10 is applied to the holantimeric pair 1 and
8, there emerge a pair of holantimers, which are different from each other (cf. 6
and 6 for the corresponding enantiomeric pair). The corresponding stereoisogram
belongs to Type II.

3. When the function represented by Eq. 8 is applied to the holantimeric pair 1 and
8, there emerge a pair of holantimers, which are different from each other (cf. 5
and 5 for the corresponding enantiomeric pair). The corresponding stereoisogram
belongs to Type III.

4. When the function represented by Eq. 11 is applied to the holantimeric pair 1 and
8, there emerge an self-enantiomeric pair, which indicates a single molecule (i.e.,
cyclobutane itself; cf. 7). The corresponding stereoisogram belongs to Type IV.

5. The remaining type is generated, for example, by the following function:

f (1) = a, f (2) = Cl, f (3) = H, f (4) = H,

f (5) = a, f (6) = Cl, f (7) = H, f (8) = H. (149)
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By applying this function to the holantimeric pair 1 and 8, there emerge a pair of
holantimers, which are different from each other. This case exhibits pseudoasym-
metry so that the corresponding stereoisogram belongs to Type V.

When all of the substituents are achiral, there appear stereoisograms of Types I and
IV for investigating stereoisomerism. As for the case of Eqs. 139, 148 is converted
into the following equation:

̂̃Cs = ×
Csσ̃ Î + σ̃15

×
Csσ̃ Î + σ̃26

×
Csσ̃ Î + σ̃37

×
Csσ̃ Î + σ̃48

×
Csσ̃ Î

+σ̃15σ̃26
×
Csσ̃ Î + σ̃15σ̃37

×
Csσ̃ Î + σ̃15σ̃48

×
Csσ̃ Î , (150)

=

⎧⎪⎨
⎪⎩

×
C Î︸︷︷︸
22

+ σ
×
C Î︸︷︷︸
22

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩σ̃15

×
C Î︸ ︷︷ ︸

24

+ σ̃15σ
×
C Î︸ ︷︷ ︸

24

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃26

×
C Î︸ ︷︷ ︸

26

+ σ̃26σ
×
C Î︸ ︷︷ ︸

26

⎫⎪⎬
⎪⎭+ {̃σ37

×
C Î︸ ︷︷ ︸

28

+ σ̃37σ
×
C Î︸ ︷︷ ︸

28

} +

⎧⎪⎨
⎪⎩σ̃48

×
C Î︸ ︷︷ ︸

30

+ σ̃48σ
×
C Î︸ ︷︷ ︸

30

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃15σ̃26

×
C Î︸ ︷︷ ︸

32

+ σ̃15σ̃26σ
×
C Î︸ ︷︷ ︸

32

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩σ̃15σ̃37

×
C Î︸ ︷︷ ︸

34

+ σ̃15σ̃37σ
×
C Î︸ ︷︷ ︸

34

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃15σ̃48

×
C Î︸ ︷︷ ︸

36

+ σ̃15σ̃48σ
×
C Î︸ ︷︷ ︸

36

⎫⎪⎬
⎪⎭ , (151)

because the resulting molecule (22 of the C1-point group) and its enantiomer (22 of
the C1-point group) construct an enantiomeric pair, which is tentatively regarded as a
single entity (equivalence class) belonging to Cs-point-group symmetry.

In the present context, the molecule 22 is regarded as belonging to the
×
C Î group

(cf. Eq. 151) and its enantiomer 22 also regarded as belonging to the
×
C Î group (cf. the

coset σ
×
C Î in Eq. 151). Hence, the corresponding stereoisogram (Fig. 8a) belongs to

×
Csσ̃ Î (cf. Eq. 150), which is more specifically categorized into Type I. Note that

×
Csσ̃ Î

may involve cases of Types I, III, IV, and V (except Type II), because a quadruplet
contained in a stereoisogram is regarded as an equivalence class to be recognized as
a single entity under the present viewpoint.

The other stereoisograms listed in Fig. 8b–d can be discussed in a parallel way
to Fig. 8a by referring to Eq. 151. As a result, the main correlation diagram for the
stereoskeleton 1 and related stereoskeletons (Fig. 6) is converted to the counterpart
for the derivative 22 and related stereoisomers, as shown in Fig. 9.
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Fig. 9 Main correlation
diagram for characterizing the
global symmetries of
1-bromo-2-chloro-3,4-difluoro-
cyclobutanes. Quadruplets of
RS-stereoisomeric
stereoskeletons (e.g., 22, 22, 23,
and 23), whose stereoisograms
are shown in Fig. 8, correspond
to respective cosets appearing in
Eq. 151

22

22

I
×

CsσI

24

24
σ15

×

CsσI

30

30

σ48

×

CsσI

36

36
σ15σ48

×

CsσI

26

26 σ26

×

CsσI
28

28

σ37

×

CsσI

32

32
σ15σ26

×

CsσI

34

34
σ15σ37

×

CsσI

By comparison between Eq. 148 (for the cyclopropane skeleton) and Eq. 151 (for

cyclopropane derivatives such as 22), the action of
×
D4 Î on 1 generates its homomers,

just as the action of
×
C Î on 22 generates its homomers. More generally speaking to

permit chiral substituents, the action of
×
D4 on 1 generates its homomers, just as the

action of
×
C1 on 22 generates its homomer (the same entity in this case).

4.2.3 Local symmetries for special cases

To treat the local symmetries of the cases with achiral substituents only, we adopt the

coset representation of degree 4, i.e., G
σ̃ j

Cσ σ̃ Î

(
/

×
GC Î

)
, which is derived from Eq. 63.

Each of the four cosets relevant to the degree 4 corresponds to a pair of skeletons to
give a molecule (and its self-holantimer).

Thereby, according to a similar procedure for deriving Eq. 111, we obtain the fol-
lowing subduction:

̂̃GCσ

(
/

×
GC Î

)
↓ G

σ̃ j

Cσ σ̃ Î
= 2n−2G

σ̃ j

Cσ σ̃ Î

(
/

×
GC Î

)
, (152)

where the coefficient 2n−2 is calculated by using |̂̃GCσ | = 2n|GCσ |, | ×
GC Î | = |GCσ |,

and | ×
G

σ̃ j

Cσ σ̃ Î
| =22|GCσ |. Note that the coset representation G

σ̃ j

Cσ σ̃ Î

(
/

×
GC Î

)
has degree

4.
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According to a similar procedure for deriving Eq. 122, we obtain the following
subduction:

̂̃GCσ

(
/

×
GC Î

)
↓ H

σ̃ j
σ = 2n−2H

σ̃ j
σ (/{I }) (153)

where the coset representation H
σ̃ j
σ (/{I }) has degree 4 because of Eq. 48.

The discussions subsequent to Eq. 152 are summarized to give the following theo-
rem:

Theorem 2 Suppose that 2n holantimeric pairs each belonging to GC Î are governed

by the coset representation ̂̃GCσ

(
/

×
GC Î

)
, which is generated by Eq. 140. They are

divided into 2n−2 stereoisograms of G
σ̃ j

Cσ σ̃ Î
(the local symmetry group of Definition 6),

where each quadruplet in a stereoisogram is concerned with four holantimeric pairs.
The 2n−2 stereoisograms construct an orbit governed by the coset representation
̂̃GCσ (/

×
G

σ̃ j

Cσ σ̃ Î
). Each of the 2n−2 stereoisograms is governed by the coset representa-

tion G
σ̃ j

Cσ σ̃ Î
(/

×
GC Î ) of degree 4 (cf. Eq. 63).

For example, the data of Eqs. 114 and 115 are alternatively analyzed in accord with
Eq. 152, which is applied to this case to give the following equation:

̂̃D4h(/
×
D4 Î ) ↓ Dσ̃15

4hσ̃ Î
= 4Dσ̃15

4hσ̃ Î
(/

×
D4 Î ), (154)

where the coset representation in the right-hand side corresponds to the following
coset decomposition:

Dσ̃15

4hσ̃ Î
= ×

D4 Î + σ
×
D4 Î + σ̃15

×
D4 Î + σ̃15σ

×
D4 Î . (155)

Note that the four cosets in the right-hand side of Eq. 155 correspond to four
holantimeric pairs which are contained as the quadruplet of a stereoisogram at the
C j atom. Theorem 2 teaches us that sixteen (= 24) holantimeric pairs are divided into
four stereoisograms, where the number 4 of the stereoisograms is confirmed by the
coefficient 4 (= 24−2) appearing in the right-hand side of Eq. 154.

For practical purposes, a more simplified equation is derived from Eq. 153 as fol-
lows:

̂̃D4h(/
×
D4 Î ) ↓ Hσ̃15

σ = 4Hσ̃15
σ (/{I }), (156)

which is conveniently used in place of Eq. 154. The coset representation Hσ̃15
σ (/{I })

corresponds to the coset decomposition of the epimeric stereoisogram group (Eq. 48)
by the identity group.

The stereoisogram corresponding to Eq. 155 is regarded as an initial stereoisogram,
which is transformed under the action of ̂̃D4h so as to give four stereoisograms accord-
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ing to Eq. 154 (cf. Theorem 2). Thereby, the data of Eqs. 114 and 115 are rearranged

to generate four orbits governed by the coset representation Dσ̃15

4hσ̃ Î
(/

×
D4 Î ).

̂̃D4h = ×
Dσ̃15

4hσ̃ Î
+ σ̃26

×
Dσ̃15

4hσ̃ Î
+ σ̃37

×
Dσ̃15

4hσ̃ Î
+ σ̃48

×
Dσ̃15

4hσ̃ Î
(157)

=

⎧⎪⎨
⎪⎩

×
D4 Î︸︷︷︸
1,8

+ σ
×
D4 Î︸ ︷︷ ︸
1,8

+ σ̃15
×
D4 Î︸ ︷︷ ︸

2,9

+ σ̃15σ
×
D4 Î︸ ︷︷ ︸

2,9

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃26

×
D4 Î︸ ︷︷ ︸

10,11

+ σ̃26σ
×
D4 Î︸ ︷︷ ︸

10,11

+ σ̃15σ̃26
×
D4 Î︸ ︷︷ ︸

16,17

+ σ̃15σ̃26σ
×
D4 Î︸ ︷︷ ︸

16,17

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃37

×
D4 Î︸ ︷︷ ︸

12,13

+ σ̃37σ
×
D4 Î︸ ︷︷ ︸

12,13

+ σ̃15σ̃37
×
D4 Î︸ ︷︷ ︸

18,19

+ σ̃15σ̃37σ
×
D4 Î︸ ︷︷ ︸

18,19

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃48

×
D4 Î︸ ︷︷ ︸

14,15

+ σ̃48σ
×
D4 Î︸ ︷︷ ︸

14,15

+ σ̃15σ̃48
×
D4 Î︸ ︷︷ ︸

20,21

+ σ̃15σ̃48σ
×
D4 Î︸ ︷︷ ︸

20,21

⎫⎪⎬
⎪⎭ , (158)

where
×
Dσ̃15

4hσ̃ Î
is equalized to Dσ̃15

4hσ̃ Î
which appears in Eq. 155. Note that Eq. 157 is

identical with Eq. 114, although they are interpreted differently.
According to Theorem 2, the four cosets appearing in Eq. 157 construct an orbit

governed by the coset representation ̂̃D4h(/
×
Dσ̃15

4hσ̃ Î
). The first coset I

×
Dσ̃15

4hσ̃ Î
(Eq. 157) is

divided into four cosets appearing in the first pair of braces in Eq. 158, where the four

cosets are contained in a orbit governed by the coset representation Dσ̃15

4hσ̃ Î
(/

×
D4 Î ). Sim-

ilarly, each of the remaining cosets (Eq. 157) is divided into four cosets, as surrounded
by a pair of braces in Eq. 158. They are also correlated to the coset representation

Dσ̃15

4hσ̃ Î
(/

×
D4 Î ). The value 4 is consistent with the degree of the coset representation

because it is calculated to be |Dσ̃15

4hσ̃ Î
|/| ×

D4 Î | = (4 × 2|D4|)/(2|D4|) = 4.
The modes of devision shown by Eq. 158 can be interpreted in s more detailed

fashion. The four cosets in the first pair of braces of Eq. 158 (cf. Eq. 155) correspond
to four holantimeric pairs of skeletons, i.e., 1/8, 1/8, 2/9, and 2/9. The four holanti-
meric pairs are correlated to Fig. 5, where the epimeric stereoisogram (Fig. 5a) and
the holantimeric stereoisogram (Fig. 5b) are superposed. The superposed result has
been already adopted in Stereoisogram #1 contained in the correlation diagram of
Fig. 7a. The other parenthesized sets of four cosets in Eq. 158 can be also illustrated in
a similar way so as to give Stereoisograms #2–#4 contained in the correlation diagram
of Fig. 7a.
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On a similar line, the data of Eqs. 117, 119, and 121 are rearranged in accord
with Eq. 154 so that the results enable us to obtain additional interpretations of the
correlation diagrams shown in Fig. 7b, c, and d.

In Theorem 2, each holantimeric pair of skeletons is regarded to be a hypothetically
single entity. In other words, Eqs. 152 and 153 are concerned with holantimeric pairs
as well as with self-holantimeric pairs, as shown in the groups GC Î (Eq. 152) and H Î
(Eq. 153). When all of the substituents are achiral, two molecules derived from such
a holantimeric pair of skeletons are really reduced into a single molecular entity, i.e.,
a self-holantimeric pair. For example, the function represented by Eq. 139 is applied
to a holantimeric pair of 1 and 8 to give holantimeric 1-bromo-2-chloro-3,4-difluoro-
cyclobutanes, i.e., 22 and 23, which are identical with each other (cf. Fig. 8).

As a result, in the case of 1-bromo-2-chloro-3,4-difluorocyclobutanes, Eq. 158 is
converted into the following equation:

̂̃Cs = ×
Cσ̃15

sσ̃ Î
+ σ̃26

×
Cσ̃15

sσ̃ Î
+ σ̃37

×
Cσ̃15

sσ̃ Î
+ σ̃48

×
Cσ̃15

sσ̃ Î
(159)

=

⎧⎪⎨
⎪⎩

×
C Î︸︷︷︸
22

+ σ
×
C Î︸︷︷︸
22

+ σ̃15
×
C Î︸ ︷︷ ︸

24

+ σ̃15σ
×
C Î︸ ︷︷ ︸

24

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃26

×
C Î︸ ︷︷ ︸

26

+ σ̃26σ
×
C Î︸ ︷︷ ︸

26

+ σ̃15σ̃26
×
C Î︸ ︷︷ ︸

32

+ σ̃15σ̃26σ
×
C Î︸ ︷︷ ︸

32

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃37

×
C Î︸ ︷︷ ︸

28

+ σ̃37σ
×
C Î︸ ︷︷ ︸

28

+ σ̃15σ̃37
×
C Î︸ ︷︷ ︸

34

+ σ̃15σ̃37σ
×
C Î︸ ︷︷ ︸

34

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩σ̃48

×
C Î︸ ︷︷ ︸

30

+ σ̃48σ
×
C Î︸ ︷︷ ︸

30

+ σ̃15σ̃48
×
C Î︸ ︷︷ ︸

36

+ σ̃15σ̃48σ
×
C Î︸ ︷︷ ︸

36

⎫⎪⎬
⎪⎭ . (160)

The resulting equation (Eq. 160) is illustrated by applying the function (Eq. 139) to
the correlation diagram shown in Fig. 7a, so that the counterpart diagram is generated
as shown in Fig. 10a. The first pair of braces of Eq. 160 contains four cosets, which
respectively corresponds to a promolecule (221), its enantiomer (221), its RS-diaste-
reomer (241), and its holantimer (241), where the subscript emphasizes the fixation
at the C1-position. The quadruplet constructs Stereoisogram #1 of Fig. 10a, where

Stereoisogram #1 is controlled by
×
Cσ̃15

sσ̃ Î
appearing in Eq. 159, while each of the RS-

stereoisomers (221, 221, 241, and 241) is controlled by
×
C Î appearing in Eq. 160. As

for an intervening group
×
Csσ̃ Î , see Eq. 150.

Similarly, the other sets of four cosets in Eq. 160 illustrated by the remaining ste-
reoisograms (#2–#4) contained in Fig. 10a. Moreover, the other correlation diagrams
(Fig. 10b–d) can be interpreted in a similar way.
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Fig. 10 Correlation diagrams of stereoisograms for 1-bromo-2-chloro-3,4-difluorocyclobutanes: a for C1
(cf. Eq. 160), b for C2, c for C3, and d for C4

4.3 Epimeric stereoisograms and RS-stereodescriptors

4.3.1 Conversion of epimeric stereoisograms into Fischer-like projections

The discussions described above indicate that stereoisomerism can be investigated by
using stereoisograms and their correlation diagrams without examining the molecular-
symmetry group GCσ detailedly. Such stereoisograms and their correlation diagrams
are mainly controlled by the stereoisogram group (Eq. 21) or the epimeric stereoiso-
gram group (Eq. 48) so that the use of the epimeric RS-stereoisomeric group (Eq. 60)
or the corresponding factor group of order 4 (Eq. 61) is sufficient to discuss stereo-
isomerism. Even if any molecular-symmetry group GCσ is selected, its factor group
of order 4 (Eq. 61) is isomorphic to the epimeric stereoisogram group (Eq. 48). In
fact, the factor group based on the tetrahedral point group Td has been implicitly
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Fig. 11 Epimeric stereoisograms for specifying stereoisomeric 1-bromo-2-chloro-3,4-difluorocyclobu-
tanes: a perspective formulas, b Fischer-like projections. The two stereoisograms belong to Type I. Each
R- or S-stereodescriptor is determined by employing the priority sequence, Br > p1 > q1 > H or
Br > p1 > q1 > H

used in place of any of the groups GCσ , although this fact has been overlooked by
organic chemists in practices of determining RS-stereodescriptors of the CIP system.
The present subsection is devoted to clarify how such practices depend on the factor
group of order 4 and on stereoisograms and correlation diagrams.

Let us examine Stereoisogram #1 contained in the correlation diagram for determin-
ing the configurations of the C1 atom (Fig. 10a). The full expression of Stereoisogram
#1 is shown in Fig. 11a, where four molecules, 221, 221, 241, and 241, are depicted by
perspective formulas with a solid circle at the C1 atom. The quadruplet corresponds
to the cosets contained in the first pair of braces in Eq. 160. The resulting epimeric
stereoisogram (Fig. 11a) belongs to Type III.

The procedure for determining RS-stereodescriptors is more clearly traced by using
Fischer-like projections shown in Fig. 11b. The perspective formula 221 is converted
into a digraph by a ring-opening procedure, which follows a similar procedure adopted
in the CIP system [11]. Suppose that one residue toward the front edge (C1–C2–C3)
is considered to be a proligand p1 and that the other backward residue (C1–C4–C3) is
considered to be another proligand q1. Then, we obtain 221� (a Fischer-like projec-
tion), as shown in Fig. 11b. The relevant molecules 22, 24, and 24 are also converted
into Fischer-like projections (221�, 241�, and 241�). Thereby, Fig. 11b is obtained as
another expression of the stereoisogram.

4.3.2 RS-diastereomeric relationships for specifying RS-stereodescriptors

Fischer-like expressions of stereoisograms such as Fig. 11b can be conveniently used
to specify RS-stereodescriptors. Strictly speaking, however, the conversion of the per-
spective expression (Fig. 11a) into the Fischer-like projection (Fig. 11b) implies that
the group D4h (and the local point group C1) is converted into the group Td (and
the local point group C1). This type of conceptual conversions is alway involved in
practices of the CIP system, although it is often overlooked by organic chemists.
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Because the priority sequence is determined to be Br > p1 > q1 > H, the config-
uration of 221� is specified to be S according to the CIP rule [8,11]. On a similar line,
the corresponding RS-diastereomer 241 is converted into a Fischer-like projection
241�, whose R-configuration is determined by using the common priority sequence,
Br > p1 > q1 > H. Thus, the S-stereodescriptor of 221 and the R-stereodescriptor of
241 are pairwise determined on the basis of their RS-diastereomeric relationship.

On the other hand, the R-stereodescriptor of 221 and the S-stereodescriptor of 241
are pairwise determined on the basis of their RS-diastereomeric relationship, where
another common priority sequence, Br > p1 > q1 > H is employed.

Thus, the determination of the S-stereodescriptor of 221 is different from that of
the R-stereodescriptor of 221 in the priority sequences to be employed. In general,
the RS-stereodescriptors of two enantiomers of each pair are by no means determined
pairwise. In this context, the foundation of the CIP system should be revised in accord
with the present approach. An attempted revision has been reported by Fujita [22].

4.3.3 Correlation diagrams and RS-stereodescriptors

The first set of cosets appearing in Eq. 160, i.e.,

{×
C Î , σ

×
C Î , σ̃15

×
C Î , σ̃15σ

×
C Î

}
, is col-

lected to give one coset
×
Cσ̃15

sσ̃ Î
appearing in Eq. 159. Then, the coset

×
Cσ̃15

sσ̃ Î
is regarded

as corresponding to a stereoisogram for specifying a quadruplet of 22, 22, 24, and
24 (Fig. 11a or b). In parallel ways, the other cosets appearing in Eq. 159 (i.e.,

σ̃26
×
Cσ̃15

sσ̃ Î
, σ̃37

×
Cσ̃15

sσ̃ Î
, and σ̃48

×
Cσ̃15

sσ̃ Î
) are correlated to respective stereoisograms, where

the correspondences concerning respective quadruplets are shown in Eq. 160. These
stereoisograms are collected to generate a correlation diagram (Fig. 12), where Stere-
oisogram #1–#4 correspond respectively to the cosets appearing in Eq. 159, i.e., #1 to
×
Cσ̃15

sσ̃ Î
, #2 to σ̃26

×
Cσ̃15

sσ̃ Î
, #3 to σ̃37

×
Cσ̃15

sσ̃ Î
, and #4 to σ̃48

×
Cσ̃15

sσ̃ Î
. Note that each of the cosets

in Eq. 159 are divided into four cosets collected in Eq. 160.
Just as Stereoisogram #1 (equivalent to Fig. 11a or b) is used to determine the RS-

stereodescriptors at the C1 atoms contained in an RS-diastereomeric pair of 22 and 24
(or of 22 and 24), the other stereoisograms are used to determine RS-stereodescriptors
for respective RS-diastereomeric pairs, which are contained in Fig. 12. The resulting
RS-stereodescriptors are attached to the central atoms of the employed Fischer-like
projections, where the priority sequences, Br > pi > qi > H (or Br > pi > qi > H),
are employed (i = 1 to 4) after the symbols pi (i = 1 to 4) denote forward residues
started from respective C1 atoms (C1–Cy2–C3) and the symbols qi (i = 1 to 4) denote
backward residues started from respective C1 atoms (C1–C4–C3).

The procedure for constructing the correlation diagram for specifying the C1 atoms
(Fig. 12), i.e., Eqs. 159 and 160 → Fig. 11a and b → Fig. 12, is applicable to the
other RS-stereocenters (the C2, C3, and C4-atoms). The counterparts of Eqs. 159 and
160 (generated according to the derivation scheme of Eqs. 114/115 → Eqs. 135/136
→ Eqs. 157/158 → Eqs. 159/160) can be obtained by parallel schemes started from
Eqs. 116/117 (for the C2 atom), Eqs. 118/119 (for the C3 atom), and Eqs. 120/121
(for the C4 atom). Then, the counterparts of Fig. 11a/b and those of Fig. 12 are also
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Fig. 12 A correlation diagram of epimeric stereoisograms for characterizing the configurations at the
C1 atoms of stereoisomeric 1-bromo-2-chloro-3,4-difluorocyclobutanes. Each promolecule is represented
by a Fischer-like projection, which is derived from the corresponding perspective formula. For example,
Stereoisogram #1 corresponds to the two expressions shown in Fig. 11

obtained so as to generate the corresponding correlation diagrams. They are collected
to generate a list for summarizing total features of the stereoisomerism, as shown in
Fig. 10. The correlation diagram of Fig. 12 is contained as Fig. 10a, where the Fischer-
like projections are omitted and only the R- or S-stereodescriptor assigned to each
Fisher-like projection is left attached to the respective node. For example, Stereois-
ogram #1 of Fig. 10a corresponds to Fig. 11b (or Fig. 11a) via Stereoisogram #1 of
Fig. 12.

From the data collected in Fig. 10, we are able to assign an RS-stereodescriptor set
to each stereoisomer, e.g.,

22 : (1S, 2R, 3R, 4S)

22 : (1R, 2S, 3S, 4R)

24 : (1R, 2R, 3R, 4S)

24 : (1S, 2S, 3S, 4R),

where we collect, for example, 1S of 221 (Fig. 10a), 2R of 222 (Fig. 10b), 3R of 223
(Fig. 10c), and 4S of 224 (Fig. 10d) in order to assign the set (1S, 2R, 3R, 4S) to
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22. The total results of such assignments are summarized in Fig. 8, where an R- or
S-stereodescriptor is attached to each RS-stereogenic center to be determined.

4.4 RS-stereodescriptors for degenerate cases

Assignments of functions to a stereoskeleton of the GCσ -symmetry generate pro-
molecules of various molecular symmetries, which belong to subgroups of GCσ . For
example, one extreme case is a promolecule of C1 (e.g., 5) and the other extreme case
is a promolecule of D4h (e.g., 7), when we start from a cyclobutane stereoskeleton of
the D4h-symmetry. Between the two extreme cases, there are degenerate cases which
belong to intermediate subgroups of D4h (or GCσ in general). The term “degenerate”
means that a part of stereoisomers (homomers) generated by means of ̂̃GCσ may be
reduced into a single molecule.

For example, let us employ the function represented by the following equation:

f : f (1) = Cl, f (2) = Cl, f (3) = Cl, f (4) = Cl,

f (5) = H, f (6) = H, f (7) = H, f (8) = H, (161)

which results in the formation of stereoisomeric 1,2,3,4-tetrachlorocyclobutanes. They
are depicted in Fig. 13, where each stereoisogram belongs to Type IV so that each
quadruplet of RS-stereoisomers corresponds to a single molecule. Among them, the
molecule 40 (Fig. 13b) is homomeric to 42 (Fig. 13c), 44 (Fig. 13d), and 46 (Fig. 13e).
The molecule 48 (Fig. 13f) is homomeric to 52 (Fig. 13h). As a result, there appear
four stereoisomeric 1,2,3,4-tetrachlorocyclobutanes, i.e., 38 (Fig. 13a), 40 (Fig. 13b),
48 (Fig. 13f), and 50 (Fig. 13g).

According to a similar procedure for constructing correlation diagrams of stere-
oisograms of 1-bromo-2-chloro-3,4-difluorocyclobutanes (i.e., Fig. 8 → Fig. 12 →
Fig. 10), the molecules listed in Fig. 13 are examined so as to generate the correspond-
ing correlation diagrams of stereoisograms, as shown in Fig. 14. An R- or S-stereode-
scriptors assigned to each RS-stereogenic center is attached to the corresponding node
contained in the relevant stereoisogram. To show the s-configuration of the C1 atom
contained in the molecule 38, for example, the assignment 1s is attached to the node
denoted by 381, which is involved in Stereoisogram #1 of Fig. 14a. Stereoisogram
#1 belongs to Type V, so that the lowercase letter 1s shows the pseudoasymmetry
concerning the C1 atom of 38. It should be noted that the 1s of 38 is paired up with
the 1r of 40, as found by the RS-diastereomeric relationship between 381 and 401 in
Stereoisogram #1 of Fig. 14a.

To show the whole configurations of 38, an RS-stereodescriptor set (1s, 2s, 3s, 4s)
is assigned to 38 by collecting the 1s of 381 in Stereoisogram #1 of Fig. 14a, the 2s
of 382 in Stereoisogram #1 of Fig. 14b, the 3s of 383 in Stereoisogram #1 of Fig. 14c,
and the 4s of 384 in Stereoisogram #1 of Fig. 14d. It should be noted, the 2s of 38
is paired up with the 2r of 42 (Stereoisogram #1 of Fig. 14b), the 3s of 38 is paired
up with the 3r of 44 (Stereoisogram #1 of Fig. 14c), and the 4s of 38 is paired up
with the 4r of 46 (Stereoisogram #1 of Fig. 14d). If we disregard the modes of locant
numbering, the references to 401, 422, 443, and 464 are essentially equivalent in the
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Fig. 13 Main stereoisograms for specifying stereoisomeric 1,2,3,4-tetrachlorocyclobutanes. All of the
stereoisograms belong to Type IV

assignment of stereodescriptors. By taking account of the modes of locant numbering,
the procedure based on Fig. 14 reveals implications in the CIP system for assigning
RS-stereodescriptors. Without referring to such correlation diagrams as Fig. 14a–d,
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Fig. 14 Correlation diagrams of stereoisograms for characterizing 1,2,3,4-tetrachlorocyclobutanes, which
are derived from the skeletons with the following modes of numbering: a for C1 (cf. the skeletons shown
in Eq. 115), b for C2 (cf. the skeletons shown in Eq. 117), c for C3 (cf. the skeletons shown in Eq. 119),
and d for C4 (cf. the skeletons shown in Eq. 121)

one tends to rely on a simplified procedure which overlooks the four modes of pairing
in his processes of specifying R- or S-configurations.

On the basis of the data collected in Fig. 14, an RS-stereodescriptor set is assigned
to each molecule. The assignment of each molecule is shown in Fig. 13, where R (or
r ) or S (or s) is attached to each RS-stereogenic atom of a cyclobutane skeleton.

Because several modes of locant numbering are available for a single molecule,
there emerge several possibilities of RS-stereodescriptor sets. For example, 40 is
homomeric to 42, 44, and 46. The four molecules (homomers) of different locant
numbering (and their enantiomers) provide us with the following possibilities:

(1r, 2S, 3s, 4R) for 40; (1r, 2R, 3s, 4S) for 40;
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(1R, 2r, 3S, 4s) for 42; (1S, 2r, 3R, 4s) for 42;
(1s, 2R, 3r, 4S) for 44; (1s, 2S, 3r, 4R) for 44;
(1S, 2s, 3R, 4r) for 46; and (1R, 2s, 3S, 4r) for 46

when we refer to the data listed in Fig. 13. Obviously, the RS-stereodescriptor sets
are converted into others by rotations (or renumbering) of the cyclobutane skeleton.
Among them, the RS-stereodescriptor set (1R, 2r, 3S, 4s) can be tentatively selected
on the assumption that a younger locant number has a stereodescriptor selected in the
priority sequence R > r > S > s.

It should be noted that, even though the RS-stereodescriptor set (1r, 2S, 3s, 4R) for
40 may not be selected, the 1r of 40 is necessary to the pairwise naming of the 1s for
38. This necessity is confirmed by Stereoisogram #1 of the correlation diagram shown
in Fig. 14a. As for the tentatively selected RS-stereodescriptor set (1R, 2r, 3S, 4s) of
42, the 1R is paired with the 1S of 48 (Stereoisogram #2 shown in Fig. 14a), the 2r is
paired with the 2s of 38 (Stereoisogram #1 shown in Fig. 14b), the 3S is paired with
the 3R of 52 (Stereoisogram #3 shown in Fig. 14c), and the 4s is paired with the 4r of
50 (Stereoisogram #3 shown in Fig. 14d). This means that the RS-stereodescriptor set
(1R, 2r, 3S, 4s) of 42 is not paired with (1S, 2r, 3R, 4s) of its mirror-image molecule
42, which is identical with 42 (=40) itself.

Because the achiral molecule 48 is homomeric to 52, we find the following possi-
bility of RS-stereodescriptor sets:

(1S, 2R, 3R, 4S) for 48; (1R, 2S, 3S, 4R) for 48;
(1R, 2R, 3S, 4S) for 52; and (1S, 2S, 3R, 4R) for 52

when we refer to the data listed in Fig. 13. Among them, we are able to select the
RS-stereodescriptor set (1R, 2R, 3S, 4S) if we suppose that a younger locant number
has a stereodescriptor selected in the priority sequence R > r > S > s.

The remaining stereoisomers are named as follows by referring to the data listed in
Fig. 13.

38: (1s, 2s, 3s, 4s)-1,2,3,4-tetrachlorocyclobutane
50: (1r, 2r, 3r, 4r)-1,2,3,4-tetrachlorocyclobutane

Although these two RS-stereodescriptor sets seem to be paired, they have nothing to
do with each other, as found by scrutinizing the correlation diagrams listed in Fig. 14.

5 Molecular symmetries of stereoisomers

5.1 Permutations for functions

In the preceding sections, we have presumed that permutations are operated on the set
� of substitution positions (Eq. 2). In other words, a fixed function f is operated to
a set of substitution positions (the modes of locant numbering) which are permuted.
Another approach should be developed to examine molecular symmetries, where the
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effects of epimerizations are disregarded tentatively. In this approach, a fixed mode of
locant numbering (for substitution positions) is regarded as corresponding to permuted
functions.

For the sake of convenience, an epimerization operation σ̃i is renamed as σ̃i j , which
denotes the permutation between positions �i and � j involved in the set � (Eq. 2).
The set of epimerization operations generates a set of stereoskeletons governed bŷ̃GGσ . A tentatively fixed function represented by the following equation,

f = { f (1), f (2), . . . , f (i), . . . , f ( j), . . . , f (n)}, (162)

is applied to the set of stereoskeletons so as to generate a set of molecules belonging to
GCσ or its conjugate subgroup σ̃i j GCσ σ̃−1

i j . The set of molecules is rearranged to give

a set of quadruplets, which is controlled by the coset representation ̂̃GGσ (/
×
GCσ σ̃ Î ).

For example, the function represented by Eq. 161 produces the molecules listed in
Fig. 13.

Each stereoisomer generated by the function f (Eq. 162) can be alternatively gen-
erated by applying the following function:

σ̃i j f = { f (1), f (2), . . . ,
i

f ( j), . . . ,
j

f (i), . . . , f (n)} (163)

to a stereoskeleton with a fixed locant number. There is the pairwise appearance of
σ̃i j f and σ̃ σ̃i j f so that the corresponding molecules are regarded as separate entities.
Note that the pair of σ̃i j f and σ̃ σ̃i j f corresponds to a quadruplet of RS-stereoisomers
contained in a main correlation diagram (cf. Fig. 6), where the numbering due to σ̃i j f
is in a clockwise-anti-clockwise relationship (in other words in an RS-diastereomeric
relationship) to the numbering due to σ̃ σ̃i j f . As a result, the holantimer of σ̃ σ̃i j f is
shown to be Î σ̃ σ̃i j f (= σ σ̃i j f ), which is enantiomeric to σ̃i j f .

For example, the function f (Eq. 161) is converted into σ̃15 f as follows:

σ̃15 f : f (1) = H, f (2) = Cl, f (3) = Cl, f (4) = Cl,

f (5) = Cl, f (6) = H, f (7) = H, f (8) = H, (164)

which is applied to a stereoskeleton 1 with a fixed set of locant numbers. Thereby, we
obtain the molecule 40′ listed in Fig. 15. As found easily, the molecule 40′ (Fig. 15) is
allowed to be equalized to the molecule 40 (Fig. 13). As a counterpart corresponding
to 41 (Fig. 13), the function σ̃ σ̃15 f (= σ̃26σ̃37σ̃48 f ) generates a counterpart molecule.
Although the framework of stereoisograms (S-axes and C-axes) and the relationships
of three kinds are left in Fig. 15 for the sake of convenience, their original meanings
are not maintained during the transformation from Fig. 13 to 15.

On a similar line, σ̃26 f etc. produce the molecule 42′ etc. (Fig. 15), which are
allowed to be equalized to the molecule 42 etc. (Fig. 13). Then, the set of molecules
listed in Fig. 15 is considered to be governed by D4hσ̃ Î .
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Fig. 15 Stereoisomeric 1,2,3,4-tetrachlorocyclobutanes, where permutations of functions are taken into
consideration. Each molecule denoted by a compound number with a prime (e.g., 40′) corresponds to the
counterpart which is denoted by a compound number without a prime (e.g., 40) in Fig. 13

It should be emphasized that the set of molecules listed in Fig. 13 is allowed to
equalized to the other set of molecules listed in Fig. 15. The former set (Fig. 13)
is controlled by the coset representation ̂̃D4h(/D4hσ̃ Î ). On the other hand, the latter
set (Fig. 15) provides us with an alternative approach, which deals explicitly with
molecular symmetries. The next task is to determine how the latter set (Fig. 15) is
controlled.
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5.2 Molecular-symmetry representations

In the preceding treatments for investigating stereoisomerism, a stereoisomeric group̂̃GCσ defined by Eq. 79 has been regarded as a multiple epimerization group H̃ (Eq. 77)
which is accompanied with a molecular-symmetry group GCσ . Note that this stand-
point presumes such lists of stereoisomers as shown in Fig. 13. The emphasis on the
multiple epimerization group H̃ is based on an implicit methodology that the molec-
ular-symmetry group GCσ is tentatively disregarded or is considered to be Cs (or to
be C1 in place of GC ). As a result, the methodology is effective even under extreme
cases in which the molecular-symmetry group GCσ (or GC ) is reduced into Cs (or
C1, i.e., no symmetry) during derivations of stereoisomers by employing functions.
In other words, the processes of epimerizations (totally stereoisomerization) can be
discussed independent of the molecular-symmetry group GCσ .

The stereoisomeric group ̂̃GCσ can be alternatively regarded as the molecular-sym-
metry group GCσ accompanied by the multiple epimerization group H̃ (Eq. 77). This
means that the molecular-symmetry group GCσ can be examined independent of the
processes of epimerizations (totally stereoisomerization). Note that this standpoint
presumes that alternative lists such as Fig. 15 are used in place of counterpart lists
such as Fig. 13. This section is devoted to develop such an alternative methodology
according to the standpoint of emphasizing the molecular-symmetry group GCσ .

Suppose that the stereoisomeric group ̂̃GCσ (Eq. 79) is represented by a coset
decomposition by the multiple epimerization group H̃ (Eq. 77). Obviously, the trans-
versal is composed of the elements of the molecular-symmetry group GCσ (Eq. 3).
When the group GC is composed of proper rotations represented by

GC =
{

g1, g2, . . . , g|GC |
}

, (165)

we obtain the molecular-symmetry group:

GCσ =
{

g1, g2, . . . , g|GC |; σg1, σg2, . . . , σg|GC |
}

, (166)

where g1 is an identity element (I ). Thereby, the stereoisomeric group ̂̃GCσ (Eq. 79)
is represented as a coset decomposition by {I } × H̃, i.e.,

̂̃GCσ =
{

g1 × H̃ + · · · + g|GC | × H̃
}

+
{
σg1 × H̃ + · · · + σg|GC | × H̃

}
(167)

= g1H̃
× + · · · + g|GC |H̃

× + σg1H̃
× + · · · + σg|GC |H̃

×
, (168)

where H̃
×

is equalized to {I } × H̃. Equation 89 implies the relationships between gi

and σ̃ gi and between σgi and σ σ̃ gi (= Î gi ) as follows:

gi , σ̃ gi ∈ gi H̃
×; σgi , Î gi ∈ σgi H̃

×
(169)
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Hence, Eq. 168 is correlated to Eq. 96 by employing an appropriate half of H̃ to give
the following set of cosets:

̂̃GCσ =
{

g1 × H̃
′+ · · · +g|GC | × H̃

′}+
{
σg1 × H̃

′+ · · · +σg|GC | × H̃
′}

+
{
σ̃ g1×H̃

′+ · · · +σ̃ g|GC |×H̃
′}+{ Î g1×H̃

′+ · · · + Î g|GC |×H̃
′}

, (170)

where H̃
′
represents the part

∑
ω≤n/2 σ̃[ω] appearing in Eq. 96. The representatives of

the respective cosets appearing in Eq. 170 are the elements of the RS-stereoisomeric
group GCσ σ̃ Î :

GCσ σ̃ Î = {g1, g2, . . . , g|GC |; σg1, σg2, . . . , σg|GC |;
σ̃ g1, σ̃ g2, . . . , σ̃ g|GC |; Î g1, Î g2, . . . , Î g|GC |}, (171)

Because the set H̃
′
is not always a group, we should use Eq. 168 which is regarded as a

coset decomposition by H̃
×

. Thereby, we are able to construct the coset representation̂̃GCσ (/H̃
×
).

Definition 14 (Molecular-Symmetry Representations) The coset representation
denoted by ̂̃GCσ (/H̃

×
) controls the molecular symmetry of a pair of enantiomers

which is transformed by means of H̃
×

. The coset representation is called a molecu-

lar-symmetry representation of the stereoisomeric group ̂̃GCσ .

Let us consider a coset decomposition of GCσ :

GCσ = g1C1 + · · · + g|GC |C1 + σg1C1 + · · · + σg|GC |C1, (172)

where we put g1 = I and C1 = {I }. Thereby, we obtain a coset representation
GCσ (/C1). By comparing Eq. 172 with Eq. 168, the molecular-symmetry representa-
tion ̂̃GCσ (/H̃

×
) (Definition 14) is concluded to be isomorphic to the coset represen-

tation GCσ (/C1). This fact is represented formally:

̂̃GCσ (/H̃
×
) ↓ GCσ = GCσ (/C1). (173)

Hence, Fujita’s USCI approach [13,23] can be applied to discussions on ̂̃GCσ (/H̃
×
),

just as the approach is applicable to GCσ (/C1). For example, the set of molecules
listed in Fig. 15 can be discussed by using D4h(/C1) and then the results are extended
to those expected by ̂̃D4h(/H̃

×
).

5.3 Subductions of molecular-symmetry representations

Any one molecule is selected as a starting molecule from the set of molecules such
as those listed in Fig. 15. Then, each of the permutation of GCσ is operated to the
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selected molecule to generate a set of |GCσ | homomeric molecules, which is governed
by the coset representation GCσ (/C1) (equivalent to ̂̃GCσ (/H̃

×
)). Among the set of

|GCσ | homomeric molecules, a subset of molecules identical to the starting molecule
is detected to give the corresponding stabilizer KCσ (or equivalently ̂̃KCσ ), which is
regarded as the symmetry of the set.

By following Fujita’s USCI approach [13], the subduction of the molecular-sym-
metry representation ̂̃GCσ (/H̃

×
) by its subgroup ̂̃KCσ is calculated as follows:

̂̃GCσ (/H̃
×
) ↓ ̂̃KCσ = |̂̃GCσ |

|̂̃KCσ |
̂̃KCσ (/H̃

×
). (174)

Moreover, a further subduction of Eq. 173 by KCσ generates the following equation:

̂̃GCσ (/H̃
×
) ↓ KCσ = |GCσ |

|KCσ |KCσ (/C1). (175)

This result is comparable to the subduction of GCσ (/C1) by its subgroup KCσ :

GCσ (/C1) ↓ KCσ = |GCσ |
|KCσ |KCσ (/C1), (176)

which has once been noted by Fujita (Eq. 7.3 of [13]). The nature of direct-product
groups indicates that the factor group ̂̃GCσ /H̃

×
is isomorphic to GCσ as well as that the

factor group ̂̃KCσ /H̃
×

is isomorphic to KCσ . Thereby, the coefficient |̂̃GCσ |/|̂̃KCσ |
(= |GCσ |/|KCσ |) of the right-hand side of Eq. 174 indicates that the presence of
|̂̃GCσ |/|̂̃KCσ | (= |GCσ |/|KCσ |) sets of identical molecules where such sets are ho-
momeric and such molecules of each set are stabilized under the action ̂̃KCσ -symmetry
(or KCσ -symmetry).

For example, the molecules collected in Fig. 15 are discussed by means of the
following subductions:

̂̃D4h(/H̃
×
) ↓ ̂̃C4v = 2̂̃C4v(/H̃

×
) or ̂̃D4h(/H̃

×
) ↓ C4v = 2C4v(/C1) (177)

̂̃D4h(/H̃
×
) ↓ ̂̃D2d = 2̂̃D2d(/H̃

×
) or ̂̃D4h(/H̃

×
) ↓ D2d = 2D2d(/C1) (178)

̂̃D4h(/H̃
×
) ↓ ̂̃C2h = 4̂̃C2h(/H̃

×
) or ̂̃D4h(/H̃

×
) ↓ C2h = 4C2h(/C1) (179)

̂̃D4h(/H̃
×
) ↓ ̂̃Cs = 8̂̃Cs(/H̃

×
) or ̂̃D4h(/H̃

×
) ↓ Cs = 8Cs(/C1) (180)

Among these subductions, Eq. 177 means that 38 (for the function f ) is selected as
an initial molecule to be examined, which is transformed into its homomers by means
of the elements of D4h . The elements of C4v fix (stabilize) 38, which is a represen-
tative of four identical molecules. The coefficient 2 of the right-hand side of Eq. 177
corresponds to the two sets of identical molecules of C4v-symmetry, where one set
of identical molecules (38 for the function f ) is accompanied by the counterpart set
of identical molecules (39 for the function σ̃ f (= σ15σ26σ37σ48 f )). The two sets are
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transitive to be regarded as a single RS-diastereomeric pair under ̂̃D4h (in the form
of ̂̃D4h(/H̃

×
)) but they are differentiated from each other under ̂̃C4v (in the form of̂̃C4v(/H̃

×
)). In this case, finally, they are homomeric to each other so as to be recog-

nized as a single molecular entity. As a result, Eq. 177 is linked to the following coset
decomposition:

D4h = C4v︸︷︷︸
38

+ C2(1)C4v︸ ︷︷ ︸
39′(=38)

, (181)

where the first coset corresponds to 38 and the second coset corresponds to its homo-
mer 39′ (= 38). Note that the element C2(1) is a rotation by 180◦ around the two-fold
axis through the C1 and C3 atoms.

The coefficient 2 of the right-hand side of Eq. 178 indicates the presence of two ho-
momeric sets of identical molecules of D2d -symmetry (for the function σ̃15σ̃37 f and
the corresponding cooperative epimerization σ̃ σ̃15σ̃37 f ), which coincide with each
other to give 50′ under the action of D4h . As a result, Eq. 178 is linked to the following
coset decomposition:

D4h = D2d︸︷︷︸
50′

+ C2(1)D2d︸ ︷︷ ︸
51′

, (182)

where the first coset corresponds to 50′ and the second coset corresponds to its hom-
omer 51′.

The coefficient 4 of the right-hand side of Eq. 179 indicates the presence of four ho-
momeric sets of identical molecules of C2h-symmetry, among which two homomeric
sets of 48′ (for the function σ̃15σ̃26 f ) and 52′ (for the function σ̃15σ̃48 f ) are depicted
in Fig. 15. The epimerizations σ̃15σ̃26 and σ̃15σ̃48 are paired with the epimerizations
σ̃ σ̃15σ̃26 and σ̃ σ̃15σ̃48, which are correlated to their homomers 49′ and 53′. As a result,
Eq. 179 is linked to the following coset decomposition:

D4h = C2h︸︷︷︸
48′

+ C2(1)C2h︸ ︷︷ ︸
49′

+ C2(2)C2h︸ ︷︷ ︸
52′

+ C2(3)C2h︸ ︷︷ ︸
53′

. (183)

The total four homomeric sets corresponding to the cosets shown in Eq. 183 coincide
with one another to give a single molecular entity under the action of D4h in this case.

The coefficient 8 of the right-hand side of Eq. 180 indicates that there appear eight
homomeric sets of Cs-symmetry, among which four sets of homomers, i.e., 40′ (for the
function σ̃15 f ), 42′ (for the function σ̃26 f ), 44′ (for the function σ̃37 f ), and 46′ (for
the function σ̃48 f ), are depicted in Fig. 15. The remaining four sets of homomers are
generated by their complementary epimerizations i.e., 41′ (for the function σ̃ σ̃15 f ),
43′ (for the function σ̃ σ̃26 f ), 45′ (for the function σ̃ σ̃37 f ), and 47′ (for the function
σ̃ σ̃48 f ), which are not depicted. As a result, Eq. 180 is linked to the following coset
decomposition:
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D4h = Cs︸︷︷︸
40′

+ C3
4 Cs︸ ︷︷ ︸
42′

+ C2(3)Cs︸ ︷︷ ︸
44′

+ C4Cs︸ ︷︷ ︸
46′

+ C2(1)Cs︸ ︷︷ ︸
41′

+ C ′
2(1)Cs︸ ︷︷ ︸

43′

+ C2(2)Cs︸ ︷︷ ︸
45′

+ C ′
2(1)Cs︸ ︷︷ ︸

47′

. (184)

The total eight sets homomeric sets which correspond to the eight cosets appearing
in Eq. 184 coincide with each other under the action of D4h so as to give a single
molecular entity.

5.4 Numbers of stereoisomers

By scrutinizing the structures of 1,2,3,4-tetrachlorocyclobutanes listed in Fig. 13,
we are able to categorize them into four sets of homomers, i.e., {38′, 39′},
{40′, 41′, 42′, 43′, 44′, 45′, 46′, 47′}, {48′, 49′, 52′, 53′}, and {50′, 51′,}, where each
set corresponds to a single molecular entity. The four molecular entities have been
interpreted by means of the subductions represented by Eqs. 177–180 or by means of
the coset decompositions represented by Eqs. 181, 182, 183, and 184.

The value 4 for the number of stereoisomeric 1,2,3,4-tetrachlorocyclobutanes is
algebraically obtained by the data shown in Table 1. To apply the Cauchy-Frobenius
Lemma [13, Chapter 13] to the present case, we count fixed structures by applying
each element of D4h to the respective molecules shown in Fig. 13. Each fixed structure
is checked by the symbol

√
in Table 1 and the numbers of checks are obtained by row

and row. The resulting values are shown in the rightmost column of Table 1. As a result,
the total number of fixed structures is calculated to be 64. Because |D4h | is 16, the num-
ber of stereoisomers (as enantiomeric pairs) is calculated to be 64/16 = 4 by means of
Eq. 13.1 of [13]. In this case, all of the stereoisomers are achiral (i.e., self-enantiomeric
pairs).

Each column of Table 1 shows the molecular symmetry of each structure. For exam-
ple, the eight elements checked by

√
in the 38′-column are collected so as to give the

point group C4v . Thereby we are able to conclude that 38′ belongs to C4v .
It should be noted, however, that the case of 1,2,3,4-tetrachlorocyclobutanes

depends on a fortunate situation where the sets of homomers generated by ̂̃D4h can
be equalized to the sets of homomers to be generated by the molecular-symmetry
group D4h . Such a fortunate situation is not always fulfilled. For example, examine
the case of 1-bromo-2-chloro-3,4-difluorocyclobutanes (Fig. 8). General solutions for
such unfortunate situations are open to future investigations.

6 RS-stereogenic and RS-astereogenic centers

6.1 Exclusion of RS-astereogenic centers

Suppose that several carbon atoms (possible RS-stereogenic centers) in a stereoskel-
eton turn out to be RS-astereogenic centers according to their substitution modes.
After such RS-astereogenic centers are excluded from our consideration, let us take
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account of the remaining m RS-stereogenic centers only. Thereby, the upper limit of
the summation Eq. 16 is changed from n to m (where m < n) without losing generality
to give:

σ̃ ′ = σ̃1σ̃2 . . . σ̃i . . . σ̃m =
m∏

i=1

σ̃i , (185)

because the epimerizations (̃σi ) are commutable. Even by this change, we are able to
rely on the axiom of organic stereoisomerism (Definition 3):

σ ′ = σ̃ ′ Î = Î σ̃ ′. (186)

which is parallel to Eq. 17. Then, the multiple epimerization group (Eq. 77) is limited
to be

H̃
′ =

m∏
i=1

Hσ̃i = Hσ̃1 × Hσ̃2 × · · · × Hσ̃m . (187)

It follows that the range ω ≤ n/2 of Eq. 96 is changed into ω ≤ m/2 so as to give the
counterpart equation as follows:

̂̃G′
Cσ = H̃

′ × GCσ

=
∑

ω≤m/2

σ̃[ω] × GCσ σ̃ Î =
∑

ω≤m/2

σ̃[ω]
×
GCσ σ̃ Î (188)

On the basis of Eq. 188, the corresponding coset representation ̂̃G′
Cσ (/

×
GCσ σ̃ Î ) can

be constructed in a similar way to the stereoisomeric representation ̂̃GCσ (/
×
GCσ σ̃ Î )

(Definition 13). We are able to these coset representations in a parallel fashion because

the modulo
×
GCσ σ̃ Î is common.

As an example, let us examine 1,2-dichlorocyclobutanes, which have been once
discussed in a previous paper [19]. In this case, Eq. 188 is written as follows:

̂̃D′
4h = ×

D4hσ̃ Î + σ̃15
×
D4hσ̃ Î . (189)
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The nature of the direct product ̂̃D′
4h indicates that σ̃15

×
D4hσ̃ Î σ̃

−1
15 = σ̃15

×
D4hσ̃ Î σ̃15 =

×
D4hσ̃ Î . This equation has been noted in the previous paper [19] (Eq. 9), although the
previous interpretation was insufficient, where the direct-product nature was not been
explicitly disclosed. Hence, Eq. 9 of [19] should be interpreted to mean Eq. 189.

As another example, let us examine stereoisomeric 1-bromo-2,3-dichlorocyclob-
utanes, which have been once discussed in [19]. In this case, Eq. 188 is written as
follows:

̂̃D′′
4h = ×

D4hσ̃ Î + σ̃15
×
D4hσ̃ Î + σ̃26

×
D4hσ̃ Î + σ̃37

×
D4hσ̃ Î (190)

= ×
D4hσ̃ Î + σ̃15

×
D4hσ̃ Î + σ̃26

×
D4hσ̃ Î + σ̃15σ̃26

×
D4hσ̃ Î , (191)

where σ̃37
×
D4hσ̃ Î can be replaced by σ̃15σ̃26

×
D4hσ̃ Î because σ̃37 and σ̃15σ̃26 are com-

plimentary to each other (i.e., σ̃ ′ = σ̃15σ̃26σ̃37 due to Eq. 185). Note that σ̃15
×
D4hσ̃ Î

etc. are stabilized by the σ̃15
×
D4hσ̃ Î σ̃15 etc., which are identical with

×
D4hσ̃ Î because

of the direct-product nature. This equation has been noted in the previous paper [19]
(Eq. 14), whose interpretation was insufficient because the direct-product nature was
not been explicitly disclosed. Hence, Eq. 14 of [19] should be interpreted to mean
Eq. 191.

6.2 Local symmetry groups after exclusion of RS-astereogenic centers

Even if RS-astereogenic centers are excluded from our consideration, most of the
abovementioned features of stereoisomerism are left to be effective. For example,
a local symmetry group Gσ̃i

Cσ σ̃ Î
(Eq. 39 or Eq. 42) can be defined at a remaining

RS-stereogenic center according to Definition 6.
To exemplify this feature, let us examine 1,2,3-trichlorocyclobutanes, which have

been once discussed in [19]. By applying Eq. 42 to this case, the local symmetry group
at the C2 atom is obtained as follows:

Dσ̃26

4hσ̃h Î
= Hσ̃26 × D4hσ̃h Î = ×

D4hσ̃h Î + σ̃26
×
D4hσ̃h Î . (192)

This equation has been noted in the previous paper [19] (Eq. 15), although the direct-
product nature was not been explicitly disclosed in the previous interpretation. Strictly
speaking, Eq. 15 of [19] should be interpreted to mean Eq. 192.

It should be emphasized that Eq. 192 for three RS-stereogenic centers is identical
with Eq. 68 for four RS-stereogenic centers. In principle, the local symmetry group
defined by Definition 6 (Eq. 39) is effective even after the exclusion of RS-astereogenic
centers. This principle is simple but provides us with a deeper insight into stereoisom-
erism. Thus, we can safely say that previous methodologies have implicitly employed
this principle in investigating stereoisomerism. In particular, the independent assign-
ments of RS-stereodescriptors at multiple RS-stereogenic centers by means of the
CIP system turn out to have heavily relied on this principle.
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7 Conclusion

The theory of stereoisomerism has been developed on the basis of stereoisomeric
groups, which have been derived as an extension of RS-stereoisomeric groups after
integrating stereoisograms [16] into correlation diagrams as a concept of higher level
[19]. The substitution positions of a stereoskeleton belonging to GCσ σ̃ Î , are permuted
by a set of epimerizations (̃σi ) at the RS-stereogenic centers of the stereoskeleton.
The product of epimerizations σ̃ (= ∏n

i=1 σ̃i ) and the mirror-image transformation
σ of the skeleton characterize the total feature of isomerization, which is based on
the axiom of organic stereoisomerism: σ = σ̃ Î = Î σ̃ , where the operation Î is cor-
related to holantimeric relationships contained in stereoisograms. Thereby, essential
features common to all RS-stereoisomeric groups are characterized by a stereoiso-
gram group: Hs (= {I, σ, σ̃ , Î }). After the definition of an epimerization group Hσ̃i

(= {I, σ̃i }), a local symmetry group Gσ̃i

Cσ σ̃ Î
at an RS-stereogenic center is defined

by the direct product Hσ̃i × GCσ σ̃ Î , from which an epimeric stereoisogram group
and an epimeric RS-stereoisomeric group is extracted to characterize stereoisograms
(an epimeric stereoisogram and a holantimeric stereoisogram) at the RS-stereogenic
center. To formulate the multiple appearance of RS-stereogenic centers, a multiple
epimerization group is defined as H̃ = ∏n

i=1 Hσ̃i , which is further used to construct a

stereoisomeric group ̂̃GCσ = H̃ × GCσ . The stereoisomeric group ̂̃GCσ is rearranged

to give a coset decomposition by
×
GCσ σ̃ Î , which is generated by modifying the RS-ste-

reoisomeric group. The corresponding coset representation ̂̃GCσ (/
×
GCσ σ̃ Î ) is called a

stereoisomeric representation, which is employed to discuss correlation diagrams of
stereoisograms. To discuss molecular symmetries, a molecular-symmetry representa-
tion ̂̃GCσ (/H̃

×
) is defined by starting from a coset decomposition ̂̃GCσ by H̃

×
, which

is generated by modifying the multiple epimerization group H̃.
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